UNI是一个为计算病理学领域开发的通用基础模型,它代表了病理学人工智能研究的重大进展。这个模型由哈佛医学院Mahmood实验室开发,旨在解决当前计算病理学面临的一些关键挑战。
UNI模型具有以下几个显著特点:
大规模预训练数据: UNI使用了超过10万张全幻灯片图像(WSI)中的1亿多张图像进行预训练,涵盖了20种主要组织类型,总数据量超过77TB。这是迄今为止在病理学领域最大规模的预训练数据集。
自监督学习: UNI采用了自监督学习方法进行预训练,无需大量标注数据,有效解决了病理图像标注困难的问题。
通用性: UNI在34个具有代表性的计算病理学任务上进行了评估,涵盖了不同难度和临床工作流程,展现了强大的通用性。
性能优势: UNI在多项任务上超越了此前的最先进模型,尤其在罕见和代表性不足的癌症类型上表现突出。
新的建模能力: UNI展示了一些新的建模能力,如与分辨率无关的组织分类、使用少样本类原型进行幻灯片分类,以及在OncoTree分类系统中对108种癌症类型进行分类的泛化能力。
UNI基于ViT-L/16的模型架构,使用了DINOv2的自监督学习方法。模型权重可以通过Hugging Face平台获取,研究人员可以方便地使用timm库加载模型并进行推理。
UNI模型的使用非常灵活,可以用于:
研究团队在多个公开和内部数据集上对UNI进行了全面评估,包括EBRAINS、PANDA、OncoTree、IHC ER/PR评估、CRC-100K-Raw和TCGA Uniform Tumor等。结果显示,UNI在多项任务上优于现有的最先进模型,如CONCH、Virchow、Prov-GigaPath等。
特别值得注意的是,UNI在一些具有挑战性的任务上表现出色:
这些结果充分展示了UNI作为通用基础模型的潜力,能够在各种复杂的病理学任务中实现良好的泛化能力。
UNI的发布标志着计算病理学领域迈向通用人工智能的重要一步。它为研究人员提供了一个强大的预训练模型,可以应用于各种下游任务,大大提高了模型开发的效率。UNI的优异性能也为提高病理诊断的准确性和效率提供了新的可能。
同时,UNI的开源也促进了病理学AI研究的开放性和协作。研究人员可以基于UNI进行进一步的模型开发和优化,推动整个领域的进步。
UNI代表了计算病理学领域基础模型研究的最新进展,为病理学AI的发展开辟了新的方向。随着更多研究人员的参与和应用,UNI有望在提高病理诊断准确性、加速药物开发等方面发挥重要作用,最终造福患者健康。
作为一个开源项目,UNI的持续发展离不开研究社区的支持。研究人员可以通过在GitHub上为项目贡献代码、报告问题或提出建议等方式参与到UNI的完善中来。同时,严格遵守项目的使用条款和伦理准则也是至关重要的,以确保这一强大工具被合理和负责任地使用。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号