在自然语言处理(NLP)领域,向量嵌入已成为表示和分析文本文档的强大工具。这些嵌入是文本的数值表示,使我们能够执行广泛的任务,包括语义相似性搜索。然而,在Web应用程序中实现语义搜索通常需要后端数据库来存储和检索向量,这可能会带来与隐私、延迟和成本相关的挑战。为了解决这些挑战,一个名为Vector Storage的创新解决方案应运而生。
Vector Storage是一个专为浏览器设计的轻量级向量数据库。它允许将文档向量存储在浏览器的本地存储中,使您能够直接在客户端执行语义相似性搜索。这种方法不仅提高了搜索性能,还增强了用户数据的隐私保护。
除了作为向量数据库的核心功能外,Vector Storage还可以用作大型语言模型(LLM)的外部记忆模块,例如GPT-3.5,为生成的文本提供额外的上下文并提高其质量。这种创新的应用极大地扩展了Vector Storage的潜力,使其成为增强语言生成任务的有力工具。
存储和管理文档向量:Vector Storage允许在浏览器的IndexedDB中存储文档向量,便于管理和检索用于相似性搜索的文档。
语义相似性搜索:该包使用向量嵌入对文本文档执行相似性搜索,从而实现更准确和上下文相关的搜索结果。
搜索结果过滤:用户可以基于元数据或文本内容过滤搜索结果,对检索的文档进行更精细的控制。
自动存储管理:通过LRU(最近最少使用)机制确保自动管理存储大小,当达到存储限制时移除最少使用的文档。
Vector Storage的工作原理主要包括以下几个步骤:
文本到向量的转换:利用OpenAI嵌入技术将文本文档转换为数值向量。这些向量捕捉了文本的语义含义,用于相似性搜索。
向量存储在本地存储:一旦文本文档被转换为向量,Vector Storage将这些向量存储在浏览器的IndexedDB中。IndexedDB是一种客户端存储解决方案,允许数据直接存储在用户的设备上。
语义相似性搜索:Vector Storage提供了一个接口来对存储的文档向量执行相似性搜索。用户输入查询文本,该文本被转换为向量,然后Vector Storage计算查询向量与存储的文档向量之间的余弦相似度。搜索结果基于相似度得分排序,得分越高表示语义相似度越大。
LRU存储管理:Vector Storage实现了最近最少使用(LRU)机制来管理存储大小。当达到存储限制时,最近最少使用的文档会自动被移除,为新条目腾出空间。这确保了存储大小保持在浏览器本地存储的限制范围内。
GPT模型,如GPT-3.5/4,是强大的语言模型,能够生成类人文本。然而,它们缺乏长期记忆,这意味着它们对提供的提示之外的上下文没有知识。Vector Storage可以通过充当GPT模型的外部记忆模块来帮助解决这一限制。
通过在Vector Storage中存储相关的上下文向量,开发人员可以执行语义搜索以检索上下文相似的文档。然后,这些文档可以被输入到GPT模型的提示中,为模型提供额外的上下文,从而提高生成文本的质量。
Vector Storage作为一个强大的工具,能够使用存储在浏览器本地存储中的向量嵌入进行语义相似性搜索。虽然基于云的向量数据库提供了许多好处,但在特定场景下使用Vector Storage与本地存储可以提供独特的优势:
隐私和数据安全:Vector Storage通过将向量存储在浏览器的本地存储中,将用户数据保留在客户端。这确保了敏感或私密信息不会传输到外部服务器,使其成为优先考虑用户隐私和数据安全的应用程序的理想选择。
低延迟和高性能:通过直接在浏览器内执行相似性搜索,Vector Storage消除了对远程服务器进行网络请求的需求。这导致延迟降低和性能提高,这对于需要实时搜索响应的应用程序至关重要。
离线功能:Vector Storage允许用户即使在离线或互联网连接有限的情况下也能进行相似性搜索。这种离线可用性对于需要提供一致搜索功能而不受网络条件影响的应用程序来说是有价值的。
成本效益:Vector Storage利用本地存储,减少了对服务器端基础设施及其相关成本的需求。这种成本效益的方法特别有利于小型企业、个人开发者和预算受限的项目。
用户赋能:使用Vector Storage,用户可以完全控制他们的数据,包括根据需要管理和删除存储的向量的能力。这种级别的控制使用户能够就其数据使用做出明智的决定。
作为一个开源项目,Vector Storage欢迎来自开发者社区的贡献。无论您是对添加新功能、修复bug还是改进文档感兴趣,您的贡献都将受到高度赞赏。该项目遵循标准的贡献工作流程,所有代码均根据MIT许可证授权。
Vector Storage为Web应用程序实现语义搜索提供了强大而灵活的解决方案。通过利用本地存储和OpenAI嵌入的功能,Vector Storage提供了一种注重隐私和成本效益的替代方案,相对于基于云的向量数据库而言。此外,它作为GPT模型的外部记忆模块的能力为增强语言生成任务开辟了新的可能性。
对于寻求增强Web应用程序搜索能力或改善GPT模型上下文感知的开发人员来说,Vector Storage无疑是一个值得尝试的工具。我们鼓励您探索代码,提供反馈,并为项目做出贡献。Vector Storage的未来发展将继续为Web开发和自然语言处理领域带来创新和便利,让我们共同期待它在提升用户体验和数据隐私保护方面的更多突破。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发 、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到 视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号