Project Icon

3D-VisTA

简化3D视觉和文本对齐的新型预训练模型

3D-VisTA是一种新型预训练变换器模型,专注于3D视觉和文本对齐。该模型采用简洁统一的架构,无需复杂的任务特定设计,可轻松适应多种下游任务。通过在大规模ScanScribe数据集上预训练,3D-VisTA在视觉定位、密集字幕生成等3D视觉语言理解任务中达到了领先水平。此外,该模型还表现出优异的数据效率,即使在标注数据有限的情况下也能保持强劲性能。

3D-VisTA:3D视觉和文本对齐的预训练Transformer

论文 PDF 论文 arXiv 项目主页 HuggingFace 检查点

朱子昱马晓健陈一新邓志东📧、 黄思源📧、 李青📧

本仓库是ICCV 2023论文"3D-VisTA:3D视觉和文本对齐的预训练Transformer"的官方实现。

论文 | arXiv | 项目 | HuggingFace演示 | 检查点

摘要

3D视觉语言接地(3D-VL)是一个新兴领域,旨在将3D物理世界与自然语言连接起来,这对于实现具身智能至关重要。目前的3D-VL模型严重依赖复杂的模块、辅助损失和优化技巧,这呼吁一个简单统一的模型。在本文中,我们提出了3D-VisTA,一个用于3D视觉和文本对齐的预训练Transformer,可以轻松适应各种下游任务。3D-VisTA仅使用自注意力层进行单模态建模和多模态融合,没有任何复杂的任务特定设计。为了进一步提高其在3D-VL任务上的性能,我们构建了ScanScribe,这是首个用于3D-VL预训练的大规模3D场景-文本对数据集。ScanScribe包含2,995个RGB-D扫描,涵盖1,185个独特的室内场景,源自ScanNet和3R-Scan数据集,并配有278K个场景描述,这些描述是从现有的3D-VL任务、模板和GPT-3生成的。3D-VisTA通过掩码语言/对象建模和场景-文本匹配在ScanScribe上进行预训练。它在各种3D-VL任务上取得了最先进的结果,包括视觉定位、密集描述、问答和情境推理。此外,3D-VisTA展示了卓越的数据效率,即使在下游任务微调时使用有限的标注也能获得强大的性能。

安装

  1. 安装conda包
conda env create --name 3dvista --file=environments.yml
  1. 安装pointnet2
cd vision/pointnet2
python3 setup.py install

准备数据集

  1. 按照Vil3dref的说明,在data/scanfamily/scan_data下下载scannet数据,该文件夹应如下所示:
./data/scanfamily/scan_data/
├── instance_id_to_gmm_color
├── instance_id_to_loc
├── instance_id_to_name
└── pcd_with_global_alignment
  1. 下载scanrefer+referit3dscanqasqa3d,并将它们放在/data/scanfamily/annotations
data/scanfamily/annotations/
├── meta_data
│   ├── cat2glove42b.json
│   ├── scannetv2-labels.combined.tsv
│   ├── scannetv2_raw_categories.json
│   ├── scanrefer_corpus.pth
│   └── scanrefer_vocab.pth
├── qa
│   ├── ScanQA_v1.0_test_w_obj.json
│   ├── ScanQA_v1.0_test_wo_obj.json
│   ├── ScanQA_v1.0_train.json
│   └── ScanQA_v1.0_val.json
├── refer
│   ├── nr3d.jsonl
│   ├── scanrefer.jsonl
│   ├── sr3d+.jsonl
│   └── sr3d.jsonl
├── splits
│   ├── scannetv2_test.txt
│   ├── scannetv2_train.txt
│   └── scannetv2_val.txt
└── sqa_task
    ├── answer_dict.json
    └── balanced
        ├── v1_balanced_questions_test_scannetv2.json
        ├── v1_balanced_questions_train_scannetv2.json
        ├── v1_balanced_questions_val_scannetv2.json
        ├── v1_balanced_sqa_annotations_test_scannetv2.json
        ├── v1_balanced_sqa_annotations_train_scannetv2.json
        └── v1_balanced_sqa_annotations_val_scannetv2.json
  1. 下载所有检查点并将它们放在 project/pretrain_weights
检查点链接说明
预训练链接3D-VisTA 预训练检查点。
ScanRefer链接从预训练检查点微调的 ScanRefer。
ScanQA链接从预训练检查点微调的 ScanQA。
Sr3D链接从预训练检查点微调的 Sr3D。
Nr3D链接从预训练检查点微调的 Nr3D。
SQA链接从预训练检查点微调的 SQA。
Scan2Cap链接从预训练检查点微调的 Scan2Cap。

运行 3D-VisTA

要运行 3D-VisTA,请使用以下命令,任务包括 scanrefer、scanqa、sr3d、nr3d、sqa 和 scan2cap。

python3 run.py --config project/vista/{task}_config.yml

致谢

我们要感谢 Vil3dref 的作者开源发布。

新闻

  • [ 2023.08 ] 首个版本发布!
  • [ 2023.09 ] 我们发布了所有下游任务的代码。

引用:

@article{zhu2023vista,
  title={3D-VisTA: Pre-trained Transformer for 3D Vision and Text Alignment},
  author={Zhu, Ziyu and Ma, Xiaojian and Chen, Yixin and Deng, Zhidong and Huang, Siyuan and Li, Qing},
  journal={ICCV},
  year={2023}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号