Efficient-LLMs-Survey

Efficient-LLMs-Survey

大语言模型效率优化技术综述

本项目系统性地综述了大语言模型效率优化研究,包括模型压缩、高效预训练、微调和推理等方面。从模型、数据和框架三个维度对相关技术进行分类,全面梳理了该领域的最新进展,为研究人员和从业者提供了有价值的参考资料。

大语言模型模型压缩量化高效训练高效推理Github开源项目

Efficient Large Language Models: A Survey

Efficient Large Language Models: A Survey [arXiv] (Version 1: 12/06/2023; Version 2: 12/23/2023; Version 3: 01/31/2024; Version 4: 05/23/2024, camera ready version of Transactions on Machine Learning Research)

Zhongwei Wan<sup>1</sup>, Xin Wang<sup>1</sup>, Che Liu<sup>2</sup>, Samiul Alam<sup>1</sup>, Yu Zheng<sup>3</sup>, Jiachen Liu<sup>4</sup>, Zhongnan Qu<sup>5</sup>, Shen Yan<sup>6</sup>, Yi Zhu<sup>7</sup>, Quanlu Zhang<sup>8</sup>, Mosharaf Chowdhury<sup>4</sup>, Mi Zhang<sup>1</sup>

<sup>1</sup>The Ohio State University, <sup>2</sup>Imperial College London, <sup>3</sup>Michigan State University, <sup>4</sup>University of Michigan, <sup>5</sup>Amazon AWS AI, <sup>6</sup>Google Research, <sup>7</sup>Boson AI, <sup>8</sup>Microsoft Research Asia

⚡News: Our survey has been officially accepted by Transactions on Machine Learning Research (TMLR) 2024. Camera ready version is available at: [OpenReview]

@article{wan2023efficient,
  title={Efficient large language models: A survey},
  author={Wan, Zhongwei and Wang, Xin and Liu, Che and Alam, Samiul and Zheng, Yu and others},
  journal={arXiv preprint arXiv:2312.03863},
  volume={1},
  year={2023},
  publisher={no}
}

❤️ Community Support

This repository is maintained by <ins>tuidan</ins> (wang.15980@osu.edu), <ins>SUSTechBruce</ins> (wan.512@osu.edu), <ins>samiul272</ins> (alam.140@osu.edu), and <ins>mi-zhang</ins> (mizhang.1@osu.edu). We welcome feedback, suggestions, and contributions that can help improve this survey and repository so as to make them valuable resources to benefit the entire community.

We will actively maintain this repository by incorporating new research as it emerges. If you have any suggestions regarding our taxonomy, find any missed papers, or update any preprint arXiv paper that has been accepted to some venue, feel free to send us an email or submit a pull request using the following markdown format.

Paper Title, <ins>Conference/Journal/Preprint, Year</ins> [[pdf](link)] [[other resources](link)].

📌 What is This Survey About?

Large Language Models (LLMs) have demonstrated remarkable capabilities in many important tasks and have the potential to make a substantial impact on our society. Such capabilities, however, come with considerable resource demands, highlighting the strong need to develop effective techniques for addressing the efficiency challenges posed by LLMs. In this survey, we provide a systematic and comprehensive review of efficient LLMs research. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics from <b>model-centric</b>, <b>data-centric</b>, and <b>framework-centric</b> perspective, respectively. We hope our survey and this GitHub repository can serve as valuable resources to help researchers and practitioners gain a systematic understanding of the research developments in efficient LLMs and inspire them to contribute to this important and exciting field.

🤔 Why Efficient LLMs are Needed?

img/image.jpg

Although LLMs are leading the next wave of AI revolution, the remarkable capabilities of LLMs come at the cost of their substantial resource demands. Figure 1 (left) illustrates the relationship between model performance and model training time in terms of GPU hours for LLaMA series, where the size of each circle is proportional to the number of model parameters. As shown, although larger models are able to achieve better performance, the amounts of GPU hours used for training them grow exponentially as model sizes scale up. In addition to training, inference also contributes quite significantly to the operational cost of LLMs. Figure 2 (right) depicts the relationship between model performance and inference throughput. Similarly, scaling up the model size enables better performance but comes at the cost of lower inference throughput (higher inference latency), presenting challenges for these models in expanding their reach to a broader customer base and diverse applications in a cost-effective way. The high resource demands of LLMs highlight the strong need to develop techniques to enhance the efficiency of LLMs. As shown in Figure 2, compared to LLaMA-1-33B, Mistral-7B, which uses grouped-query attention and sliding window attention to speed up inference, achieves comparable performance and much higher throughput. This superiority highlights the feasibility and significance of designing efficiency techniques for LLMs.

📖 Table of Content

🤖 Model-Centric Methods

Model Compression

Quantization

Post-Training Quantization
Weight-Only Quantization
  • I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models, <ins>arXiv, 2024</ins> [Paper]
  • IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact, <ins>arXiv, 2024</ins> [Paper]
  • OmniQuant: OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, <ins>ICLR, 2024</ins> [Paper] [Code]
  • OneBit: Towards Extremely Low-bit Large Language Models, <ins>arXiv, 2024</ins> [Paper]
  • GPTQ: Accurate Quantization for Generative Pre-trained Transformers, <ins>ICLR, 2023</ins> [Paper] [Code]
  • QuIP: 2-Bit Quantization of Large Language Models With Guarantees, <ins>arXiv, 2023</ins> [Paper] [Code]
  • AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration, <ins>arXiv, 2023</ins> [Paper] [Code]
  • OWQ: Lessons Learned from Activation Outliers for Weight Quantization in Large Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
  • SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression, <ins>arXiv, 2023</ins> [Paper] [Code]
  • FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only Quantization for LLMs, <ins>NeurIPS-ENLSP, 2023</ins> [Paper]
  • LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, <ins>NeurlPS, 2022</ins> [Paper] [Code]
  • Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning, <ins>NeurIPS, 2022</ins> [Paper] [Code]
  • QuantEase: Optimization-based Quantization for Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
Weight-Activation Co-Quantization
  • OmniQuant: OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, <ins>ICLR, 2024</ins> [Paper] [Code]
  • Intriguing Properties of Quantization at Scale, <ins>NeurIPS, 2023</ins> [Paper]
  • ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation, <ins>arXiv, 2023</ins> [Paper] [Code]
  • ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization Using Floating-Point Formats, <ins>NeurIPS-ENLSP, 2023</ins> [Paper] [Code]
  • OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization, <ins>ISCA, 2023</ins> [Paper] [Code]
  • RPTQ: Reorder-based Post-training Quantization for Large Language Models, <ins>arXiv, 2023</ins> [Paper] [Code]
  • Outlier Suppression+: Accurate Quantization of Large Language Models by Equivalent and Optimal Shifting and Scaling, <ins>arXiv, 2023</ins> [Paper] [Code]
  • QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models, <ins>arXiv, 2023</ins> [Paper]
  • SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, <ins>ICML, 2023</ins> [Paper] [Code]
  • ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, <ins>NeurIPS, 2022</ins> [Paper]
Evaluation of Post-Training Quantization
  • Evaluating Quantized Large Language Models, <ins>arXiv, 2024</ins> [Paper]
Quantization-Aware Training
  • The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits, <ins>arXiv, 2024</ins> [Paper]
  • FP8-LM: Training FP8 Large Language Models, <ins>arXiv, 2023</ins> [Paper]
  • Training and inference of large language

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多