bird-recognition-review

bird-recognition-review

深度学习推动鸟类声音识别研究进展

本项目梳理了鸟类声音识别领域的数据集、论文和开源项目等资源。重点介绍了卷积神经网络等深度学习方法在提高识别准确率方面的进展。同时探讨了野外录音中的背景噪声、多种鸟类同时发声等挑战,为该领域研究提供了参考。

鸟类识别数据集机器学习音频处理生态学Github开源项目

Bird recognition - review of useful resources

A list of useful resources in the bird sound recognition - bird songs & calls

Singing bird

Feel free to make a pull request or to ⭐️ the repository if you like it!

Introduction

What are challenges in bird song recognition? Elias Sprengel, Martin Jaggi, Yannic Kilcher, and Thomas Hofmann in their paper Audio Based Bird Species Identification using Deep Learning Techniques point out some very important issues:

  • Background noise in the recordings - city noises, churches, cars...
  • Very often multiple birds singing at the same time - multi-label classification problem
  • Differences between mating calls and songs - mating calls are short, whereas songs are longer
  • Inter-species variance - same bird species singing in different countries might sound completely different
  • Variable length of sound recordings
  • Large number of different species

Datasets

Flying bird

  • xeno-canto.org is a website dedicated to sharing bird sounds from all over the world (480k, September 2019). Scripts that make downloading easier can be found here:

    • AgaMiko/xeno-canto-download - Simple and easy scraper to download sound with metadata, written in python
    • ntivirikin/xeno-canto-py - Python API wrapper designed to help users easily download xeno-canto.org recordings and associated information. Avaiable to install with pip manager.
    • realzza/xenopy - XenoPy is a python wrapper for Xeno-canto API 2.0. Supports multiprocessing downloading.
  • Macaulay Library is the world's largest archive of animal sounds. It includes more than 175,000 audio recordings covering 75 percent of the world's bird species. There are an ever-increasing numbers of insect, fish, frog, and mammal recordings. The video archive includes over 50,000 clips, representing over 3,500 species.[1] The Library is part of Cornell Lab of Ornithology of the Cornell University.

  • tierstimmenarchiv.de - Animal sound album at the Museum für Naturkunde in Berlin, with a collection of bird songs and calls.

  • RMBL-Robin database - Database for Noise Robust Bird Song Classification, Recognition, and Detection.A 78 minutes Robin song database collected by using a close-field song meter (www.wildlifeacoustics.com) at the Rocky Mountain Biological Laboratory near Crested Butte, Colorado in the summer of 2009. The recorded Robin songs are naturally corrupted by different kinds of background noises, such as wind, water and other vocal bird species. Non-target songs may overlap with target songs. Each song usually consists of 2-10 syllables. The timing boundaries and noise conditions of the syllables and songs, and human inferred syllable patterns are annotated.

  • floridamuseum.ufl.edu/bird-sounds - A collection of bird sound recordings from the Florida Museum Bioacoustic Archives, with 27,500 cataloged recordings representing about 3,000 species, is perhaps third or fourth largest in the world in number of species.

  • Field recordings, worldwide ("freefield1010") - a collection of 7,690 excerpts from field recordings around the world, gathered by the FreeSound project, and then standardised for research. This collection is very diverse in location and environment, and for the BAD Challenge we have annotated it for the presence/absence of birds.

  • Crowdsourced dataset, UK ("warblrb10k") - 8,000 smartphone audio recordings from around the UK, crowdsourced by users of Warblr the bird recognition app. The audio covers a wide distribution of UK locations and environments, and includes weather noise, traffic noise, human speech and even human bird imitations.

  • Remote monitoring flight calls, USA ("BirdVox-DCASE-20k") - 20,000 audio clips collected from remote monitoring units placed near Ithaca, NY, USA during the autumn of 2015, by the BirdVox project. More info about BirdVox-DCASE-20k

  • british-birdsongs.uk - A collection of bird songs, calls and alarms calls from Great Britain

  • birding2asia.com/W2W/freeBirdSounds - Bird recordigns from India, Philippines, Taiwan and Thailad.

  • azfo.org/SoundLibrary/sounds_library - All recordings are copyrighted© by the recordist. Downloading and copying are authorized for noncommercial educational or personal use only.

Feel free to add other datasets to a list if you know any!

Papers

Flying bird

2020

  • Priyadarshani, Nirosha, et al. "Wavelet filters for automated recognition of birdsong in long‐time field recordings." Methods in Ecology and Evolution 11.3 (2020): 403-417.      <details><summary> Abstract </summary> Ecoacoustics has the potential to provide a large amount of information about the abundance of many animal species at a relatively low cost. Acoustic recording units are widely used in field data collection, but the facilities to reliably process the data recorded – recognizing calls that are relatively infrequent, and often significantly degraded by noise and distance to the microphone – are not well-developed yet. We propose a call detection method for continuous field recordings that can be trained quickly and easily on new species, and degrades gracefully with increased noise or distance from the microphone. The method is based on the reconstruction of the sound from a subset of the wavelet nodes (elements in the wavelet packet decomposition tree). It is intended as a preprocessing filter, therefore we aim to minimize false negatives: false positives can be removed in subsequent processing, but missed calls will not be looked at again. We compare our method to standard call detection methods, and also to machine learning methods (using as input features either wavelet energies or Mel-Frequency Cepstral Coefficients) on real-world noisy field recordings of six bird species. The results show that our method has higher recall (proportion detected) than the alternative methods: 87% with 85% specificity on >53 hr of test data, resulting in an 80% reduction in the amount of data that needed further verification. It detected >60% of calls that were extremely faint (far away), even with high background noise. This preprocessing method is available in our AviaNZ bioacoustic analysis program and enables the user to significantly reduce the amount of subsequent processing required (whether manual or automatic) to analyse continuous field recordings collected by spatially and temporally large-scale monitoring of animal species. It can be trained to recognize new species without difficulty, and if several species are sought simultaneously, filters can be run in parallel.
</details>
  • Brooker, Stuart A., et al. "Automated detection and classification of birdsong: An ensemble approach." Ecological Indicators 117 (2020): 106609.      <details><summary> Abstract </summary> The avian dawn chorus presents a challenging opportunity to test autonomous recording units (ARUs) and associated recogniser software in the types of complex acoustic environments frequently encountered in the natural world. To date, extracting information from acoustic surveys using readily-available signal recognition tools (‘recognisers’) for use in biodiversity surveys has met with limited success. Combining signal detection methods used by different recognisers could improve performance, but this approach remains untested. Here, we evaluate the ability of four commonly used and commercially- or freely-available individual recognisers to detect species, focusing on five woodland birds with widely-differing song-types. We combined the likelihood scores (of a vocalisation originating from a target species) assigned to detections made by the four recognisers to devise an ensemble approach to detecting and classifying birdsong. We then assessed the relative performance of individual recognisers and that of the ensemble models. The ensemble models out-performed the individual recognisers across all five song-types, whilst also minimising false positive error rates for all species tested. Moreover, during acoustically complex dawn choruses, with many species singing in parallel, our ensemble approach resulted in detection of 74% of singing events, on average, across the five song-types, compared to 59% when averaged across the recognisers in isolation; a marked improvement. We suggest that this ensemble approach, used with suitably trained individual recognisers, has the potential to finally open up the use of ARUs as a means of automatically detecting the occurrence of target species and identifying patterns in singing activity over time in challenging acoustic environments.
</details>

2019

  • Stowell, Dan, et al. "Automatic acoustic detection of birds through deep learning: the first Bird Audio Detection challenge." Methods in Ecology and Evolution 10.3 (2019): 368-380.      <details><summary> Abstract </summary> Assessing the presence and abundance of birds is important for monitoring specific species as well as overall ecosystem health. Many birds are most readily detected by their sounds, and thus, passive acoustic monitoring is highly appropriate. Yet acoustic monitoring is often held back by practical limitations such as the need for manual configuration, reliance on example sound libraries, low accuracy, low robustness, and limited ability to generalise to novel acoustic conditions. Here, we report outcomes from a collaborative data challenge. We present new acoustic monitoring datasets, summarise the machine learning techniques proposed by challenge teams, conduct detailed performance evaluation, and discuss how such approaches to detection can be integrated into remote monitoring projects. Multiple methods were able to attain performance of around 88% area under the receiver operating characteristic (ROC) curve (AUC), much higher performance than previous general‐purpose methods. With modern machine learning, including deep learning, general‐purpose acoustic bird detection can achieve very high retrieval rates in remote monitoring data, with no manual recalibration, and no pretraining of the detector for the target species or the acoustic conditions in the target environment.
</details>
  • Koh, Chih-Yuan, et al. "Bird Sound Classification using Convolutional Neural Networks." (2019).      <details><summary> Abstract </summary> Accurate prediction of bird species from audio recordings is beneficial to bird conservation. Thanks to the rapid advance in deep learning, the accuracy of bird species identification from audio recordings has greatly improved in recent years. This year, the BirdCLEF2019[4] task invited participants to design a system that could recognize 659 bird species from 50,000 audio recordings. The challenges in this competition included memory management, the number of bird species for the machine to recognize, and the mismatch in signal-to-noise ratio between the training and the testing sets. To participate in this competition, we adopted two recently popular convolutional neural network architectures — the ResNet[1] and the inception model[13]. The inception model achieved 0.16 classification mean average precision (c-mAP) and ranked the second place among five teams that successfully submitted their predictions.
</details>
  • Kahl, S., et al. "Overview of BirdCLEF 2019: large-scale bird recognition in Soundscapes." CLEF working notes (2019).      <details><summary> Abstract </summary> The BirdCLEF challenge—as part of the 2019 LifeCLEF Lab[7]—offers a large-scale proving ground for system-oriented evaluation ofbird species identification based on audio recordings. The challenge usesdata collected through Xeno-canto, the worldwide community of birdsound recordists. This ensures that BirdCLEF is close to the conditionsof real-world application, in particular with regard to the number ofspecies in the training set (659). In 2019, the challenge was focused onthe difficult task of recognizing all birds vocalizing in omni-directionalsoundscape recordings. Therefore, the dataset of the previous year wasextended with more than 350 hours of manually annotated soundscapesthat were recorded using 30 field recorders in Ithaca (NY, USA). Thispaper describes the methodology of the conducted evaluation as well asthe synthesis of the main results and lessons learned.
</details>

2018

  • Kojima, Ryosuke, et al. "HARK-Bird-Box: A Portable Real-time Bird Song Scene Analysis System." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.      <details><summary> Abstract </summary> This paper addresses real-time bird song scene analysis. Observation of animal behavior such as communication of wild birds would be aided by a portable device implementing a real-time system that can localize sound sources, measure their timing, classify their sources, and visualize these factors of sources. The difficulty of such a system is an integration of these functions considering the real-time requirement. To realize such a system, we propose a cascaded approach, cascading sound source detection, localization, separation, feature extraction, classification, and visualization for bird song analysis. Our system is constructed by combining an open source software for robot audition called HARK and a deep learning library to implement a bird song classifier based on a convolutional neural network (CNN). Considering portability, we implemented this system on a single-board computer, Jetson TX2, with a microphone array and developed a prototype device for bird song scene analysis. A preliminary experiment confirms a computational time for the whole system to realize a real-time system. Also, an additional experiment with a bird song dataset revealed a trade-off relationship between classification accuracy and time consuming and the effectiveness of our classifier.
</details>
  • Fazeka, Botond, et al. "A multi-modal deep neural network approach to bird-song identification." arXiv preprint arXiv:1811.04448 (2018).      <details><summary> Abstract </summary> We present a multi-modal Deep Neural Network (DNN) approach for bird song identification. The presented approach takes both audio samples and metadata as input. The audio is fed into a Convolutional Neural Network (CNN) using four convolutional layers. The additionally provided metadata is processed using fully connected layers. The flattened convolutional layers and the fully connected layer of the metadata are joined and fed into a fully connected layer. The resulting architecture achieved 2., 3. and 4. rank in the BirdCLEF2017 task in various training configurations.
</details>
  • Lasseck, Mario. "Audio-based Bird Species Identification with Deep Convolutional Neural Networks." CLEF (Working Notes). 2018.      <details><summary> Abstract </summary> This paper presents deep learning techniques for audio-based bird identification at very large scale. Deep Convolutional Neural Networks (DCNNs) are fine-tuned to classify 1500 species. Various data augmentation techniques are applied to prevent overfitting and to further improve model accuracy and generalization. The proposed approach is evaluated in the BirdCLEF 2018 campaign and provides the best system in all subtasks. It surpasses previous state-of-the-art by 15.8 % identifying foreground species and 20.2 % considering also background species achieving a mean reciprocal rank (MRR) of 82.7 % and 74.0

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多