Reinforcement-Learning-Papers

Reinforcement-Learning-Papers

强化学习顶会论文精选资源库

这是一个汇集AAAI、IJCAI、NeurIPS等顶级会议强化学习论文的资源库。涵盖多智能体、元学习、分层学习等前沿方向,提供PDF和代码链接。项目定期更新,为研究人员追踪领域发展、探索新算法提供便捷参考。

强化学习多智能体论文集研究趋势算法Github开源项目
<p align="center"> <img src="overview.jpg" alt="Reinforcement Learning!" style="width=80%"> </p>

Welcome to our GitHub repository! This repository is dedicated to curating significant research papers in the field of Reinforcement Learning (RL) that have been accepted at top academic conferences such as AAAI, IJCAI, NeurIPS, ICML, ICLR, ICRA, AAMAS and more. We provide you with a convenient resource hub to help you stay updated on the latest developments in reinforcement learning, delve into research trends, and explore cutting-edge algorithms and methods.

<p align='center'> <img src="https://img.shields.io/github/stars/Allenpandas/Reinforcement-Learning-Papers.svg"> <img src="https://img.shields.io/github/forks/Allenpandas/Reinforcement-Learning-Papers.svg"> <a href="README.zh-CN.md"><img src="https://img.shields.io/badge/文档-中文版-blue.svg" alt="CN doc"></a> <a href="README.md"><img src="https://img.shields.io/badge/document-English-blue.svg" alt="EN doc"></a> <img src="https://img.shields.io/github/repo-size/Allenpandas/Reinforcement-Learning-Papers.svg"> <img src="https://img.shields.io/github/issues/Allenpandas/Reinforcement-Learning-Papers.svg"> <img src="https://img.shields.io/github/issues-pr/Allenpandas/Reinforcement-Learning-Papers.svg"> </p>

News

  • 2023/11/12: I added the related repository.
  • 2023/8/19: I added papers accepted at AAMAS'23, IJCAI'23, ICRA'23, ICML'23,ICLR'23, AAAI'23, NeurIPS'22 etc
  • 2023/1/6: I created the repository.

Contributing

<p align="center"> <img src="./we-need-you.jpeg" alt="We Need You!"> </p>

Markdown format:

- **Paper Name**.
  [[pdf](link)]
  [[code](link)]
  - Author 1, Author 2, and Author 3. *conference, year*.

Please help to contribute this list by contacting me or add pull request.

For any questions, feel free to contact me 📮.

Table of Contents

1_Multi-Agent Reinforcement Learning

  • Online Tuning for Offline Decentralized Multi-Agent Reinforcement Learning. [pdf]
    • Jiechuan Jiang, Zongqing Lu. AAAI 2023.
  • Reward Poisoning Attacks on Offline Multi-Agent Reinforcement Learning. [pdf]
    • Young Wu, Jeremy McMahan, Xiaojin Zhu, Qiaomin Xie. AAAI 2023.
  • Models as Agents: Optimizing Multi-Step Predictions of Interactive Local Models in Model-Based Multi-Agent Reinforcement Learning. [pdf]
    • Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, Hankz Hankui Zhuo. AAAI 2023.
  • DeCOM: Decomposed Policy for Constrained Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Zhaoxing Yang, Haiming Jin, Rong Ding, Haoyi You, Guiyun Fan, Xinbing Wang, Chenghu Zhou. AAAI 2023.
  • Quantum Multi-Agent Meta Reinforcement Learning. [pdf]
    • Won Joon Yun, Jihong Park, Joongheon Kim. AAAI 2023.
  • Learning Explicit Credit Assignment for Cooperative Multi-Agent Reinforcement Learning via Polarization Policy Gradient. [pdf]
    • Wubing Chen, Wenbin Li, Xiao Liu, Shangdong Yang, Yang Gao. AAAI 2023.
  • Learning from Good Trajectories in Offline Multi-Agent Reinforcement Learning. [pdf]
    • Qi Tian, Kun Kuang, Furui Liu, Baoxiang Wang. AAAI 2023.
  • DM²: Decentralized Multi-Agent Reinforcement Learning via Distribution Matching. [pdf]
    • Caroline Wang, Ishan Durugkar, Elad Liebman, Peter Stone. AAAI 2023.
  • Consensus Learning for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Zhiwei Xu, Bin Zhang, Dapeng Li, Zeren Zhang, Guangchong Zhou, Hao Chen, Guoliang Fan. AAAI 2023.
  • HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with Dual Coordination Mechanism. [pdf]
    • Zhiwei Xu, Yunpeng Bai, Bin Zhang, Dapeng Li, Guoliang Fan. AAAI 2023.
  • DACOM: Learning Delay-Aware Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Tingting Yuan, Hwei-Ming Chung, Jie Yuan, Xiaoming Fu. AAAI 2023.
  • Certified Policy Smoothing for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Ronghui Mu, Wenjie Ruan, Leandro Soriano Marcolino, Gaojie Jin, Qiang Ni. AAAI 2023.
  • Enhancing Smart, Sustainable Mobility with Game Theory and Multi-Agent Reinforcement Learning With Applications to Ridesharing. [pdf]
    • Lucia Cipolina-Kun. AAAI 2023.
  • Tackling Safe and Efficient Multi-Agent Reinforcement Learning via Dynamic Shielding (Student Abstract). [pdf]
    • Wenli Xiao, Yiwei Lyu, John M. Dolan. AAAI 2023.
  • Multi-Agent Reinforcement Learning for Adaptive Mesh Refinement. [pdf]
    • Jiachen Yang, Ketan Mittal, Tarik Dzanic, Socratis Petrides, Brendan Keith, Brenden K. Petersen, Daniel M. Faissol, Robert W. Anderson. AAMAS 2023.
  • Adaptive Learning Rates for Multi-Agent Reinforcement Learning. [pdf]
    • Jiechuan Jiang, Zongqing Lu. AAMAS 2023.
  • Adaptive Value Decomposition with Greedy Marginal Contribution Computation for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Shanqi Liu, Yujing Hu, Runze Wu, Dong Xing, Yu Xiong, Changjie Fan, Kun Kuang, Yong Liu. AAMAS 2023.
  • A Variational Approach to Mutual Information-Based Coordination for Multi-Agent Reinforcement Learning. [pdf]
    • Woojun Kim, Whiyoung Jung, Myungsik Cho, Youngchul Sung. AAMAS 2023.
  • Mediated Multi-Agent Reinforcement Learning. [pdf]
    • Dmitry Ivanov, Ilya Zisman, Kirill Chernyshev. AAMAS 2023.
  • EXPODE: EXploiting POlicy Discrepancy for Efficient Exploration in Multi-agent Reinforcement Learning. [pdf]
    • Yucong Zhang, Chao Yu. AAMAS 2023.
  • AC2C: Adaptively Controlled Two-Hop Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Xuefeng Wang, Xinran Li, Jiawei Shao, Jun Zhang. AAMAS 2023.
  • Learning Structured Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Junjie Sheng, Xiangfeng Wang, Bo Jin, Wenhao Li, Jun Wang, Junchi Yan, Tsung-Hui Chang, Hongyuan Zha. AAMAS 2023.
  • Model-based Sparse Communication in Multi-agent Reinforcement Learning. [pdf]
    • Shuai Han, Mehdi Dastani, Shihan Wang. AAMAS 2023.
  • Sequential Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing. AAMAS 2023.
  • Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-Robot Cooperative Exploration. [pdf]
    • Chao Yu, Xinyi Yang, Jiaxuan Gao, Jiayu Chen, Yunfei Li, Jijia Liu, Yunfei Xiang, Ruixin Huang, Huazhong Yang, Yi Wu, Yu Wang. AAMAS 2023.
  • Learning from Multiple Independent Advisors in Multi-agent Reinforcement Learning. [pdf]
    • Sriram Ganapathi Subramanian, Matthew E. Taylor, Kate Larson, Mark Crowley. AAMAS 2023.
  • CraftEnv: A Flexible Collective Robotic Construction Environment for Multi-Agent Reinforcement Learning. [pdf]
    • Rui Zhao, Xu Liu, Yizheng Zhang, Minghao Li, Cheng Zhou, Shuai Li, Lei Han. AAMAS 2023.
  • Multi-Agent Reinforcement Learning with Safety Layer for Active Voltage Control. [pdf]
    • Yufeng Shi, Mingxiao Feng, Minrui Wang, Wengang Zhou, Houqiang Li. AAMAS 2023.
  • Model-based Dynamic Shielding for Safe and Efficient Multi-agent Reinforcement Learning. [pdf]
    • Wenli Xiao, Yiwei Lyu, John M. Dolan. AAMAS 2023.
  • Toward Risk-based Optimistic Exploration for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Jihwan Oh, Joonkee Kim, Minchan Jeong, Se-Young Yun. AAMAS 2023.
  • Counterexample-Guided Policy Refinement in Multi-Agent Reinforcement Learning. [pdf]
    • Briti Gangopadhyay, Pallab Dasgupta, Soumyajit Dey. AAMAS 2023.
  • Prioritized Tasks Mining for Multi-Task Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Yang Yu, Qiyue Yin, Junge Zhang, Kaiqi Huang. AAMAS 2023.
  • TransfQMix: Transformers for Leveraging the Graph Structure of Multi-Agent Reinforcement Learning Problems. [pdf]
    • Matteo Gallici, Mario Martin, Ivan Masmitja. AAMAS 2023.
  • Parameter Sharing with Network Pruning for Scalable Multi-Agent Deep Reinforcement Learning. [pdf]
    • Woojun Kim, Youngchul Sung. AAMAS 2023.
  • Towards Explaining Sequences of Actions in Multi-Agent Deep Reinforcement Learning Models. [pdf]
    • Khaing Phyo Wai, Minghong Geng, Budhitama Subagdja, Shubham Pateria, Ah-Hwee Tan. AAMAS 2023.
  • Multi-Agent Deep Reinforcement Learning for High-Frequency Multi-Market Making. [pdf]
    • Pankaj Kumar. AAMAS 2023.
  • Learning Individual Difference Rewards in Multi-Agent Reinforcement Learning. [pdf]
    • Chen Yang, Guangkai Yang, Junge Zhang. AAMAS 2023.
  • Off-Beat Multi-Agent Reinforcement Learning. [pdf]
    • Wei Qiu, Weixun Wang, Rundong Wang, Bo An, Yujing Hu, Svetlana Obraztsova, Zinovi Rabinovich, Jianye Hao, Yingfeng Chen, Changjie Fan. AAMAS 2023.
  • Selectively Sharing Experiences Improves Multi-Agent Reinforcement Learning. [pdf]
    • Matthias Gerstgrasser, Tom Danino, Sarah Keren. AAMAS 2023.
  • Off-the-Grid MARL: Datasets and Baselines for Offline Multi-Agent Reinforcement Learning. [pdf]
    • Claude Formanek, Asad Jeewa, Jonathan P. Shock, Arnu Pretorius. AAMAS 2023.
  • Grey-box Adversarial Attack on Communication in Multi-agent Reinforcement Learning. [pdf]
    • Xiao Ma, Wu-Jun Li. AAMAS 2023.
  • Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response of Residential Loads. [pdf]
    • Vincent Mai, Philippe Maisonneuve, Tianyu Zhang, Hadi Nekoei, Liam Paull, Antoine Lesage-Landry. AAMAS 2023.
  • Learning to Self-Reconfigure for Freeform Modular Robots via Altruism Multi-Agent Reinforcement Learning. [pdf]
    • Lei Wu, Bin Guo, Qiuyun Zhang, Zhuo Sun, Jieyi Zhang, Zhiwen Yu. AAMAS 2023.
  • Multi-Agent Path Finding via Reinforcement Learning with Hybrid Reward. [pdf]
    • Cheng Zhao, Liansheng Zhuang,

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多