AzurePublicDataset

AzurePublicDataset

Azure云平台多样化工作负载数据集

AzurePublicDataset项目提供Azure云平台多种工作负载数据集,涵盖虚拟机、Azure Functions和LLM推理等领域。这些数据集反映了不同时期Azure服务的使用情况,为云计算资源管理和优化研究提供了宝贵素材。项目还包含相关论文链接和使用指南,有助于深入理解和分析云计算平台的运行特征。

AzureMicrosoft虚拟机函数计算大语言模型Github开源项目

概述

本仓库包含Microsoft Azure公开发布的跟踪数据,以造福研究和学术社区。 目前有两类跟踪数据:

  • 虚拟机跟踪:两个代表性的Microsoft Azure虚拟机(VM)工作负载跟踪数据,分别收集于2017年和2019年,以及一个专门用于研究打包算法的VM请求跟踪数据。
  • Azure Functions跟踪:Azure Functions调用的代表性跟踪数据,收集于2019年的两周内,以及Azure Functions blob访问的跟踪数据,收集于2020年11月至12月之间。
  • Azure LLM推理跟踪:LLM推理调用的代表性跟踪数据,包含输入和输出令牌,收集于2023年11月。

我们按原样提供这些跟踪数据,但愿意帮助研究人员理解和使用它们。如有任何问题或疑问,请发送电子邮件至我们的邮件列表

按论文快速链接:

  • 论文"Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms"(SOSP'17)的跟踪数据(2017)(2019)
  • 论文"Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider"(ATC'19)的跟踪数据(2019)
  • 论文"Protean: VM Allocation Service at Scale"(OSDI'20)的跟踪数据(2020)
  • 论文"Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications"(SoCC'21)的跟踪数据(2020)
  • 论文"Splitwise: Efficient generative LLM inference using phase splitting"(ISCA'24)的跟踪数据(2023)
  • 论文"Designing Cloud Servers for Lower Carbon"(ISCA'24)的数据集和代码(2023)

虚拟机跟踪

这些跟踪数据是Azure某一地理区域第一方VM工作负载的经过清理的子集。我们提供了jupyter笔记本,直接比较每个跟踪数据与其对应的完整VM工作负载的主要特征,显示它们在定性上非常相似(2019年的VM部署规模除外)。比较这两个跟踪数据的特征说明了工作负载在这两年间如何变化。

如果您在研究中使用这些VM跟踪数据,请务必引用我们的SOSP'17论文"Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms",其中包含了2017年Azure VM工作负载的完整分析。

跟踪数据位置

  • AzurePublicDatasetV1 - 使用2017年Azure VM工作负载数据创建的跟踪,包含约200万台VM和12亿次利用率读数的信息。
  • AzurePublicDatasetV2 - 使用2019年Azure VM工作负载数据创建的跟踪,包含约260万台VM和19亿次利用率读数的信息。

Azure打包跟踪数据

  • AzureTracesForPacking2020 - 该数据集代表Microsoft Azure计算服务的部分工作负载,专门用于评估打包算法。数据集包括:

    • VM请求及其优先级
    • 每个请求的VM生命周期
    • 每种VM类型分配的(标准化)资源

如果您在研究中使用Azure打包跟踪数据,请务必引用我们的OSDI'20论文"Protean: VM Allocation Service at Scale",其中包含Azure分配器及相关工作负载分析的描述。

Azure Functions跟踪

函数调用

  • AzureFunctionsDataset2019 - 这些跟踪数据包含2019年7月运行在Azure Functions上的部分应用程序的以下信息:

    • 每分钟每个(匿名化)函数被调用的次数及其对应的触发器组
    • (匿名化)函数如何分组到(匿名化)应用程序中,以及应用程序如何按(匿名化)所有者分组
    • 每个函数的执行时间分布
    • 每个应用程序的内存使用分布

如果您在研究中使用2019年Azure Functions跟踪数据,请务必引用我们的ATC'20论文"Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider",其中包含2019年7月Azure Functions工作负载的完整分析。

  • AzureFunctionsInvocationTrace2021 - 这是从2021-01-31开始的两周函数调用跟踪。跟踪包含调用到达和离开(或完成)时间,具有以下模式:

    • app:应用程序ID(加密)
    • func:函数ID(加密),仅在应用程序内唯一
    • end_timestamp:函数调用结束时间戳(毫秒)
    • duration:函数调用持续时间(毫秒)

如果您在研究中使用2021年Azure Functions跟踪数据,请引用这篇SOSP'21论文"Faster and Cheaper Serverless Computing on Harvested Resources"

Functions Blob访问

  • AzureFunctionsBlobDataset2020 - 这是Microsoft Azure Functions中blob访问的样本,收集于2020年11月23日至12月6日。该数据集是SoCC 2021论文"Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications"中描述和分析的数据。

Azure LLM推理跟踪

  • AzureLLMInferenceDataset2023 - 这是Azure中两个LLM推理服务的样本,包含输入和输出令牌。该数据集收集于2023年11月11日。其中包含ISCA 2024论文"Splitwise: Efficient generative LLM inference using phase splitting"中描述和分析的数据。

联系我们

如有任何问题或疑问,请发送电子邮件至我们的邮件列表

这些跟踪数据源于Azure和Microsoft Research之间的合作。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多