Woodpecker

Woodpecker

专门用于校正多模态大语言模型中的幻觉现象的方法

Woodpecker是一种创新方法,专门用于校正多模态大语言模型中的幻觉现象。与依赖重训练数据的传统方法不同,Woodpecker通过关键概念提取、问题制定、视觉知识验证、视觉声明生成和幻觉校正五个阶段实现训练无关的校正。这种方法适应性广泛,可解释性强,并在POPE基准测试中显著提高模型准确性。用户可以通过在线演示平台体验Woodpecker的功能。更多信息请参考我们的arXiv论文或在线Demo。

Woodpecker多模态大语言模型幻觉矫正POPE基准mPLUG-OwlGithub开源项目

Woodpecker 项目介绍

项目背景

在多模态大语言模型(MLLMs)逐渐成熟的过程中,"幻觉"现象成为一个显著问题。所谓幻觉,指的是生成的文本与给定图像内容不一致。这种现象对模型的准确性造成了影响,而现有的解决方案主要依赖于需要特定数据重新训练模型的指令调优方式。

项目简介

Woodpecker 项目提出了一种创新性的无训练解决方案,旨在识别和纠正模型生成文本中的幻觉问题。项目的灵感来源于啄木鸟通过啄食来治疗树木的形式,因此命名为“Woodpecker”。该方法不需要对现有模型进行重新训练,而是通过以下五个阶段实现对幻觉问题的纠正:

  1. 关键概念提取:识别文本中与图像相关的核心概念。
  2. 问题生成:基于关键概念提出验证问题。
  3. 视觉知识验证:利用图像验证问题的答案。
  4. 视觉声明生成:生成与验证结果一致的文本描述。
  5. 幻觉纠正:修改生成文本中的不一致内容。

Woodpecker 可以被集成到不同的多模态大语言模型中,并通过访问五个阶段的中间结果提供可解释性。

项目成果

Woodpecker 项目在 POPE 基准测试中展现了其显著的潜力,相比基线模型 MiniGPT-4 与 mPLUG-Owl,准确性分别提高了 30.66% 和 24.33%。另外,项目也在其他多个基准测试中进行了评估,验证其在处理目标级和属性级幻觉方面的质量和表现。

演示和使用

用户可以在线体验 Woodpecker 的在线演示,感受该方法的实际应用效果。

初步准备

  • 创建 Conda 环境并安装必要的包和模型。
  • 运行推理代码用于根据图像和文本输出进行纠正。

详细的安装步骤和使用说明可以在项目的 GitHub 页面找到。

鸣谢

Woodpecker 项目的开发得益于多个优秀开源项目的支持,包括 mPLUG-Owl、GroundingDINO、BLIP-2 和 LLaMA-Adapter。感谢这些项目提供的卓越工作。

如果读者对 Woodpecker 项目感兴趣,可以参考 arXiv 论文 获取更为详细的技术细节。同时,也欢迎关注项目的 在线演示 以了解其应用。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多