Project Icon

Automated-Fact-Checking-Resources

自动事实核查资源库 数据集、模型与研究进展

该项目整理了自动事实核查领域的全面资源,包括最新数据集、模型和研究进展。涵盖从声明检测到结果预测的完整流程,并包含多模态事实核查内容。项目持续更新,为研究人员提供便捷的参考资料库。

Automated Fact-Checking Resources

Maintenance Last Commit Contribution_welcome

Updates:

  • 2024.6: Added a section for LLM-generated text in Related Tasks. Added papers from EACL, NAACL, and AAAI 2024

Overview

This repo contains relevant resources from our survey paper A Survey on Automated Fact-Checking in TACL 2022 and the follow up multimodal survey paper Multimodal Automated Fact-Checking: A Survey. In this survey, we present a comprehensive and up-to-date survey of automated fact-checking (AFC), unifying various components and definitions developed in previous research into a common framework. As automated fact-checking research evolves, we will provide timely updates on the survey and this repo.

Task Definition

Figure below shows a NLP framework for automated fact-checking (AFC) with text consisting of three stages:

  1. Claim detection to identify claims that require verification;
  2. Evidence retrievalto find sources supporting or refuting the claim;
  3. Claim verification to assess the veracity of the claim based on the retrieved evidence.

Framework

Evidence retrieval and claim verification are sometimes tackled as a single task referred to asfactual verification, while claim detection is often tackled separately. Claim verificationcan be decomposed into two parts that can be tackled separately or jointly: verdict prediction, where claims are assigned truthfulness labels, and justification production, where explanations for verdicts must be produced.

In the follow up multimodal survey, we extends the first stage with a claim extraction step, and generalises the third stage to cover tasks that fall under multimodal AFC:

Framework

  1. Claim Detection and Extraction: multiple modalities can be required to understand and extract a claim at this stage. Simply detecting misleading content is often not enough – it is necessary to extract the claim before fact-checking it in the subsequent stages.
  2. Evidence Retrieval: similarly to fact-checking with text, multimodal fact-checking relies on evidence to make judgments.
  3. Verdict Prediction and Justification Production: it is decomposed into three tasks considering prevalent ways that multimodal misinformation can be conveyed:
    • Manipulation Classification: classify misinformative claims with manipulated content or correct claims accompanied by manipulated content.
    • Out-of-context Classification: detect unchanged content from a different context.
    • Veracity Classification: classify the veracity of textual claims given retrieved evidence.

Datasets

Claim Detection and Extraction Dataset

  • MR2: A Benchmark for Multimodal Retrieval-Augmented Rumor Detection in Social Media (Hu et al., 2023) [Paper] [Dataset] SIGIR 2023
  • FakeSV: A Multimodal Benchmark with Rich Social Context for Fake News Detection on Short Video Platforms (Qi et al., 2023) [Paper] [Dataset] AAAI 2023
  • SciTweets - A Dataset and Annotation Framework for Detecting Scientific Online Discourse (Hafid et al., 2022) [Paper] [Dataset] CIKM 2022
  • Empowering the Fact-checkers! Automatic Identification of Claim Spans on Twitter (Sundriyal et al., 2022) [Paper] [Dataset] EMNLP 2022
  • Stanceosaurus: Classifying Stance Towards Multilingual Misinformation (Zheng et al., 2022) [Paper] [Dataset] EMNLP 2022
  • Challenges and Opportunities in Information Manipulation Detection: An Examination of Wartime Russian Media (Park et al., 2022) [Paper] Findings EMNLP 2022
  • CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets (Mohr et al., 2022) [Paper] [Dataset] LREC 2021
  • MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset (Nielsen et al., 2022) [Paper] [Dataset] SIGIR 2021
  • STANKER: Stacking Network based on Level-grained Attention-masked BERT for Rumor Detection on Social Media (Rao et al., 2021) [Paper] [Dataset] EMNLP 2021
  • Fighting the COVID-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society (Alam et al., 2021) [Paper] [Dataset] Findings EMNLP 2021
  • Towards Automated Factchecking: Developing an Annotation Schema and Benchmark for Consistent Automated Claim Detection (Konstantinovskiy et al., 2021) [Paper] ACM Digital Threats: Research and Practice 2021
  • The CLEF-2021 CheckThat! Lab on Detecting Check-Worthy Claims, Previously Fact-Checked Claims, and Fake News (Nakov et al., 2021) [Paper] [Dataset]
  • Mining Dual Emotion for Fake News Detection (Zhang et al., 2021) [Paper] [Dataset] WWW 2021
  • Overview of CheckThat! 2020: Automatic Identification and Verification of Claims in Social Media (Barrón-Cedeño et al., 2020) [Paper] [Dataset]
  • Citation Needed: A Taxonomy and Algorithmic Assessment of Wikipedia's Verifiability (Redi et al., 2019) [Paper] [Dataset]
  • SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for Rumours (Gorrell et al., 2019). [Paper] [Dataset]
  • Joint Rumour Stance and Veracity (Lillie et al., 2019) [Paper] [Dataset]
  • Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. Task 1: Check-Worthiness (Atanasova et al., 2018) [Paper] [Dataset]
  • Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter (Volkova et al., 2017) [Paper] [Dataset] ACL 2017
  • A Context-Aware Approach for Detecting Worth-Checking Claims in Political Debates (Gencheva et al., 2017) [Paper] [Dataset] RANLP 2017
  • Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs (Jin et al., 2017) [Paper] ACM MM 2017
  • SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours (Derczynski et al., 2017). [Paper] [Dataset]
  • Detecting Rumors from Microblogs with Recurrent Neural Networks (Ma et al., 2016) [Paper] [Dataset] IJCAI 2016
  • Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads (Zubiaga et al., 2016). [Paper] [Dataset] PLOS One 2016
  • CREDBANK: A Large-Scale Social Media Corpus with Associated Credibility Annotations (Mitra and Gilbert, 2015). [Paper] [Dataset] ICWSM 2015
  • Detecting Check-worthy Factual Claims in Presidential Debates (Hassan et al., 2015) [Paper] CIKM 2015

Verdict Prediction Dataset

Veracity Classification Dataset

Natural Claims
  • Do Large Language Models Know about Facts? (Xu et al., 2024) [Paper] [Dataset] [Code] ICLR 2024
  • What Makes Medical Claims (Un)Verifiable? Analyzing Entity and Relation Properties for Fact Verification (Wührl et al., 2024) [Paper] [Dataset] EACL 2024
  • COVID-VTS: Fact Extraction and Verification on Short Video Platforms (Liu et al., 2023) [Paper] [Dataset] [Code] EACL 2023
  • End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models (Yao et al., 2023) [Paper] [Dataset] SIGIR 2023
  • Modeling Information Change in Science Communication with Semantically Matched Paraphrases (Wright et al., 2022) [Paper] [Dataset] [Code] EMNLP 2022
  • Generating Literal and Implied Subquestions to Fact-check Complex Claims (Chen et al., 2022) [Paper] [Dataset] EMNLP 2022
  • SciFact-Open: Towards open-domain scientific claim verification (Wadden et al., 2022) [Paper] [Dataset] EMNLP 2022
  • CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking (Hu et al., 2022) [Paper] [Dataset] NAACL 2022
  • WatClaimCheck: A new Dataset for Claim Entailment and Inference (Khan et al., 2022) [Paper] [Dataset] ACL 2022
  • Open-Domain, Content-based, Multi-modal Fact-checking of Out-of-Context Images via Online Resources (Abdelnabi et al., 2022) [Paper] [Dataset] CVPR 2022
  • MMM: An Emotion and Novelty-aware Approach for Multilingual Multimodal Misinformation Detection (Gupta et al., 2022)
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号