Project Icon

MobileSAM

高效轻量化图像分割模型,适用于移动设备

MobileSAM是一种轻量级图像分割模型,专为移动应用优化。它保持了与原始SAM相当的性能,同时大幅减少了模型参数和推理时间。通过将ViT-H编码器替换为TinyViT,MobileSAM将参数量从615M降至9.66M,推理速度从456ms提升至12ms。该项目提供完整的训练和使用文档,支持ONNX导出,可轻松集成到现有SAM项目中。

更快的分割任何物体(MobileSAM)和分割所有物体(MobileSAMv2)

:pushpin: MobileSAMv2现已在ResearchGatearXiv上发布。它用物体感知的提示采样替代了SAM中的网格搜索提示采样,以实现更快的分割所有物体(SegEvery)

:pushpin: MobileSAM现已在ResearchGatearXiv上发布。它用轻量级图像编码器替代了SAM中的重量级图像编码器,以实现更快的分割任何物体(SegAny)

支持ONNX模型导出。欢迎在您的设备上测试并与我们分享结果。

MobileSAM的演示CPU上运行,可在hugging face演示上查看。在我们的Mac i5 CPU上,大约需要3秒。在hugging face演示中,由于界面和性能较差的CPU,速度会更慢,但仍然运行良好。敬请期待更多功能的新版本!您也可以在本地PC上运行MobileSAM的演示。

:grapes: 媒体报道和从SAM适配到MobileSAM的项目(感谢大家!)

MobileSAM

:star: MobileSAM是如何训练的? MobileSAM在单个GPU上使用10万个数据集(原始图像的1%)训练不到一天。训练代码将很快发布。

:star: 如何从SAM适配到MobileSAM? 由于MobileSAM完全保持了与原始SAM相同的流程,我们继承了原始SAM的预处理、后处理和所有其他接口。因此,假设除了更小的图像编码器外,其他一切都完全相同,那些将原始SAM用于项目的人几乎可以零成本地适配到MobileSAM

:star: MobileSAM的性能与原始SAM相当(至少在视觉上),并且除了图像编码器的变化外,完全保持了与原始SAM相同的流程。具体来说,我们用一个更小的Tiny-ViT(5M)替换了原始的重量级ViT-H编码器(632M)。在单个GPU上,MobileSAM每张图像运行约12ms:图像编码器8ms,掩码解码器4ms。

  • ViT基础图像编码器的比较如下:

    图像编码器原始SAMMobileSAM
    参数数量611M5M
    速度452ms8ms
  • 原始SAM和MobileSAM具有完全相同的提示引导掩码解码器:

    掩码解码器原始SAMMobileSAM
    参数数量3.876M3.876M
    速度4ms4ms
  • 整个流程的比较如下:

    整个流程(编码器+解码器)原始SAMMobileSAM
    参数数量615M9.66M
    速度456ms12ms

:star: 原始SAM和MobileSAM以点作为提示。

:star: 原始SAM和MobileSAM以框作为提示。

:muscle: MobileSAM是否比FastSAM更快、更小?是的! MobileSAM比同期的FastSAM小约7倍,快约5倍。 整个流程的比较如下:

整个流程(编码器+解码器)FastSAMMobileSAM
参数数量68M9.66M
速度64ms12ms

:muscle: MobileSAM是否比FastSAM更好地对齐原始SAM?是的! 建议FastSAM使用多个点,因此我们比较了两个提示点(具有不同像素距离)的mIoU,结果如下。更高的mIoU表示更好的对齐。

mIoUFastSAMMobileSAM
1000.270.73
2000.330.71
3000.370.74
4000.410.73
5000.410.73

安装

代码需要 python>=3.8,以及 pytorch>=1.7torchvision>=0.8。请按照这里的说明安装 PyTorch 和 TorchVision 依赖。强烈建议安装支持 CUDA 的 PyTorch 和 TorchVision。

安装 Mobile Segment Anything:

pip install git+https://github.com/ChaoningZhang/MobileSAM.git

或者在本地克隆仓库并安装:

git clone git@github.com:ChaoningZhang/MobileSAM.git
cd MobileSAM; pip install -e .

演示

安装 MobileSAM 后,您可以在本地 PC 上运行演示或查看我们的 HuggingFace 演示

它需要最新版本的 gradio

cd app
python app.py

入门

可以通过以下方式加载 MobileSAM:

from mobile_sam import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor

model_type = "vit_t"
sam_checkpoint = "./weights/mobile_sam.pt"

device = "cuda" if torch.cuda.is_available() else "cpu"

mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
mobile_sam.to(device=device)
mobile_sam.eval()

predictor = SamPredictor(mobile_sam)
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)

或为整个图像生成蒙版:

from mobile_sam import SamAutomaticMaskGenerator

mask_generator = SamAutomaticMaskGenerator(mobile_sam)
masks = mask_generator.generate(<your_image>)

入门(MobileSAMv2)

检查点下载模型权重。

下载模型权重后,可以简单地使用更快的 SegEvery 和 MobileSAMv2,如下所示:

cd MobileSAMv2
bash ./experiments/mobilesamv2.sh

ONNX 导出

MobileSAM 现在支持 ONNX 导出。使用以下命令导出模型:

python scripts/export_onnx_model.py --checkpoint ./weights/mobile_sam.pt --model-type vit_t --output ./mobile_sam.onnx

还可以查看 示例笔记本 以了解详细步骤。 我们建议使用经过测试的 onnx==1.12.0onnxruntime==1.13.1

我们 MobileSAM 的 BibTex

如果您在研究中使用 MobileSAM,请使用以下 BibTeX 条目。:mega: 谢谢!

@article{mobile_sam,
  title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications},
  author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung-Ho and Lee, Seungkyu and Hong, Choong Seon},
  journal={arXiv preprint arXiv:2306.14289},
  year={2023}
}

致谢

本工作得到了韩国政府(MSIT)资助的信息通信技术规划评估研究所(IITP)的支持(No.RS-2022-00155911,人工智能融合创新人力资源开发(庆熙大学))

SAM(Segment Anything)[bib]
@article{kirillov2023segany,
  title={Segment Anything}, 
  author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
  journal={arXiv:2304.02643},
  year={2023}
}
TinyViT(TinyViT: Fast Pretraining Distillation for Small Vision Transformers)[bib]
@InProceedings{tiny_vit,
  title={TinyViT: Fast Pretraining Distillation for Small Vision Transformers},
  author={Wu, Kan and Zhang, Jinnian and Peng, Houwen and Liu, Mengchen and Xiao, Bin and Fu, Jianlong and Yuan, Lu},
  booktitle={European conference on computer vision (ECCV)},
  year={2022}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号