跨模态融合Transformer用于多光谱目标检测的官方代码。
使用Transformer和Yolov5进行多光谱目标检测
多光谱图像对可以提供综合信息,使目标检测应用在开放世界中更加可靠和稳健。 为充分利用不同模态,我们在本文中提出了一种简单而有效的跨模态特征融合方法,称为跨模态融合Transformer(CFT)。 与之前基于CNN的工作不同,在Transformer方案的指导下,我们的网络在特征提取阶段学习长程依赖关系并集成全局上下文信息。 更重要的是,通过利用Transformer的自注意力机制,网络可以自然地进行同时的模态内和模态间融合,并稳健地捕捉RGB和热红外域之间的潜在交互,从而显著提高多光谱目标检测的性能。 在多个数据集上进行的大量实验和消融研究表明,我们的方法是有效的,并达到了最先进的检测性能。
夜间场景
<div align="left"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/a241c7e4-25ae-4368-ab6e-7295842601e3.gif" width="600"> </div>白天场景
<div align="left"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/dad5835f-d9e0-418c-b138-d6a7eb42e627.gif" width="600"> </div>如果您在研究中使用了此代码库,请引用我们的论文:
@article{qingyun2022cross,
title={Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery},
author={Qingyun, Fang and Zhaokui, Wang},
journal={Pattern Recognition},
volume={130},
pages={108786},
year={2022},
publisher={Elsevier}
}
@article{fang2021cross,
title={Cross-Modality Fusion Transformer for Multispectral Object Detection},
author={Fang Qingyun and Han Dapeng and Wang Zhaokui},
journal={arXiv preprint arXiv:2111.00273},
year={2021}
}
需要Python>=3.6.0,并安装所有requirements.txt中的依赖,包括PyTorch>=1.7(与yolov5相同 https://github.com/ultralytics/yolov5 )。
git clone https://github.com/DocF/multispectral-object-detection
$ cd multispectral-object-detection $ pip install -r requirements.txt
-[FLIR] [Google Drive] [百度网盘] 提取码:qwer
一个新的对齐版本。
-[LLVIP] 下载
-[VEDAI] 下载
你需要将所有标注转换为YOLOv5格式。
参考: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
yolov5权重(预训练)
-[yolov5s] 谷歌云盘
-[yolov5m] 谷歌云盘
-[yolov5l] 谷歌云盘
-[yolov5x] 谷歌云盘
CFT权重
-[LLVIP] 谷歌云盘
-[FLIR] 谷歌云盘
一些示例在data/multispectral/目录下
一些示例在models/transformer/目录下
注意!!!我们在论文中使用了xxxx_transfomerx3_dataset.yaml。
训练: python train.py
测试: python test.py
检测: python detect_twostream.py
数据集 | CFT | mAP50 | mAP75 | mAP |
---|---|---|---|---|
FLIR | 73.0 | 32.0 | 37.4 | |
FLIR | ✔️ | 78.7 (Δ5.7) | 35.5 (Δ3.5) | 40.2 (Δ2.8) |
LLVIP | 95.8 | 71.4 | 62.3 | |
LLVIP | ✔️ | 97.5 (Δ1.7) | 72.9 (Δ1.5) | 63.6 (Δ1.3) |
VEDAI | 79.7 | 47.7 | 46.8 | |
VEDAI | ✔️ | 85.3 (Δ5.6) | 65.9(Δ18.2) | 56.0 (Δ9.2) |
对数平均漏检率
模型 | 对数平均漏检率 |
---|---|
YOLOv3-RGB | 37.70% |
YOLOv3-IR | 17.73% |
YOLOv5-RGB | 22.59% |
YOLOv5-IR | 10.66% |
基线(我们的) | 6.91% |
CFT(我们的) | 5.40% |
漏检率 - FPPI 曲线
<div align="left"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/2cc7e680-936e-4974-99e6-229582c6e12e.png" width="500"> </div>OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等 多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它 具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号