Project Icon

awesome-uncertainty-deeplearning

深度学习不确定性估计资源汇总

该项目汇集深度学习不确定性估计领域的论文、代码、书籍和博客。内容涵盖贝叶斯方法、集成方法、采样/dropout方法等技术,以及在分类、回归、异常检测等方面的应用。项目为研究人员和实践者提供全面参考,助力深入理解和应用深度学习中的不确定性估计。

Awesome Uncertainty in Deep learning

MIT License Awesome

This repo is a collection of awesome papers, codes, books, and blogs about Uncertainty and Deep learning.

:star: Feel free to star and fork. :star:

If you think we missed a paper, please open a pull request or send a message on the corresponding GitHub discussion. Tell us where the article was published and when, and send us GitHub and ArXiv links if they are available.

We are also open to any ideas for improvements!

Table of Contents

Papers

Surveys

Conference

  • A Comparison of Uncertainty Estimation Approaches in Deep Learning Components for Autonomous Vehicle Applications [AISafety Workshop 2020]

Journal

Arxiv

  • Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks [ArXiv2024] - [PyTorch]
  • A System-Level View on Out-of-Distribution Data in Robotics [arXiv2022]
  • A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning [arXiv2022]

Theory

Conference

  • A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods [NeurIPS2023]
  • Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning [ICLR2023]
  • Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask? [ICLR2023]
  • Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty of Ambiguous Inputs [ICML2023] - [PyTorch]
  • On Second-Order Scoring Rules for Epistemic Uncertainty Quantification [ICML2023]
  • Neural Variational Gradient Descent [AABI2022]
  • Top-label calibration and multiclass-to-binary reductions [ICLR2022]
  • Bayesian Model Selection, the Marginal Likelihood, and Generalization [ICML2022]
  • With malice towards none: Assessing uncertainty via equalized coverage [AIES 2021]
  • Uncertainty in Gradient Boosting via Ensembles [ICLR2021] - [PyTorch]
  • Repulsive Deep Ensembles are Bayesian [NeurIPS2021] - [PyTorch]
  • Bayesian Optimization with High-Dimensional Outputs [NeurIPS2021]
  • Residual Pathway Priors for Soft Equivariance Constraints [NeurIPS2021]
  • Dangers of Bayesian Model Averaging under Covariate Shift [NeurIPS2021] - [TensorFlow]
  • A Mathematical Analysis of Learning Loss for Active Learning in Regression [CVPR Workshop2021]
  • Why Are Bootstrapped Deep Ensembles Not Better? [NeurIPS Workshop]
  • Deep Convolutional Networks as shallow Gaussian Processes [ICLR2019]
  • On the accuracy of influence functions for measuring group effects [NeurIPS2018]
  • To Trust Or Not To Trust A Classifier [NeurIPS2018] - [Python]
  • Understanding Measures of Uncertainty for Adversarial Example Detection [UAI2018]

Journal

Arxiv

  • Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping [arXiv2022]
  • Efficient Gaussian Neural Processes for Regression [arXiv2021]
  • Dense Uncertainty Estimation [arXiv2021] - [PyTorch]
  • A higher-order swiss army infinitesimal jackknife [arXiv2019]

Bayesian-Methods

Conference

  • Training Bayesian Neural Networks with Sparse Subspace Variational Inference [ICLR2024]
  • Variational Bayesian Last Layers [ICLR2024]
  • A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors [ICLR2024]
  • Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning [CVPR2023]
  • Robustness to corruption in pre-trained Bayesian neural networks [ICLR2023]
  • Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift [NeurIPS2023] - [PyTorch]
  • Transformers Can Do Bayesian Inference [ICLR2022] - [PyTorch]
  • Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture [NeurIPS2022]
  • On Batch Normalisation for Approximate Bayesian Inference [AABI2021]
  • Activation-level uncertainty in deep neural networks [ICLR2021]
  • Laplace Redux – Effortless Bayesian Deep Learning [NeurIPS2021] - [PyTorch]
  • On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks [UAI2021]
  • Learnable uncertainty under Laplace approximations [UAI2021]
  • Bayesian Neural Networks with Soft Evidence [ICML Workshop2021] - [PyTorch]
  • TRADI: Tracking deep neural network weight distributions for uncertainty estimation [ECCV2020] - [PyTorch]
  • How Good is the Bayes Posterior in Deep Neural Networks Really? [ICML2020]
  • Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors [ICML2020] - [TensorFlow]
  • Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [ICML2020] - [PyTorch]
  • Bayesian Deep Learning and a Probabilistic Perspective of Generalization [NeurIPS2020]
  • A Simple Baseline for Bayesian Uncertainty in Deep Learning [NeurIPS2019] - [PyTorch] - [TorchUncertainty]
  • Bayesian Uncertainty Estimation for Batch Normalized Deep Networks [ICML2018] - [TensorFlow] - [TorchUncertainty]
  • Lightweight Probabilistic Deep Networks [CVPR2018] - [PyTorch]
  • A Scalable Laplace Approximation for Neural Networks [ICLR2018] - [Theano]
  • Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning [ICML2018]
  • Weight Uncertainty in Neural Networks [ICML2015]

Journal

  • Analytically Tractable Hidden-States Inference in Bayesian Neural Networks [JMLR2024]
  • Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification [TPAMI2023] - [PyTorch]
  • Bayesian modeling of uncertainty in low-level vision [IJCV1990]

Arxiv

  • Density Uncertainty Layers for Reliable Uncertainty Estimation [arXiv2023]

Ensemble-Methods

Conference

  • Input-gradient space particle inference for neural network ensembles [ICLR2024]
  • Fast Ensembling with Diffusion Schrödinger Bridge [ICLR2024]
  • Pathologies of Predictive Diversity in Deep Ensembles [ICLR2024]
  • Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization [ICML2023]
  • Bayesian Posterior Approximation With Stochastic Ensembles
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号