awesome-uncertainty-deeplearning

awesome-uncertainty-deeplearning

深度学习不确定性估计资源汇总

该项目汇集深度学习不确定性估计领域的论文、代码、书籍和博客。内容涵盖贝叶斯方法、集成方法、采样/dropout方法等技术,以及在分类、回归、异常检测等方面的应用。项目为研究人员和实践者提供全面参考,助力深入理解和应用深度学习中的不确定性估计。

深度学习不确定性贝叶斯方法集成学习神经网络Github开源项目

Awesome Uncertainty in Deep learning

<div align="center">

MIT License Awesome

</div>

This repo is a collection of awesome papers, codes, books, and blogs about Uncertainty and Deep learning.

:star: Feel free to star and fork. :star:

If you think we missed a paper, please open a pull request or send a message on the corresponding GitHub discussion. Tell us where the article was published and when, and send us GitHub and ArXiv links if they are available.

We are also open to any ideas for improvements!

<h2> Table of Contents </h2>

Papers

Surveys

Conference

  • A Comparison of Uncertainty Estimation Approaches in Deep Learning Components for Autonomous Vehicle Applications [AISafety Workshop 2020]

Journal

Arxiv

  • Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks [ArXiv2024] - [PyTorch]
  • A System-Level View on Out-of-Distribution Data in Robotics [arXiv2022]
  • A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning [arXiv2022]

Theory

Conference

  • A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods [NeurIPS2023]
  • Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning [ICLR2023]
  • Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask? [ICLR2023]
  • Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty of Ambiguous Inputs [ICML2023] - [PyTorch]
  • On Second-Order Scoring Rules for Epistemic Uncertainty Quantification [ICML2023]
  • Neural Variational Gradient Descent [AABI2022]
  • Top-label calibration and multiclass-to-binary reductions [ICLR2022]
  • Bayesian Model Selection, the Marginal Likelihood, and Generalization [ICML2022]
  • With malice towards none: Assessing uncertainty via equalized coverage [AIES 2021]
  • Uncertainty in Gradient Boosting via Ensembles [ICLR2021] - [PyTorch]
  • Repulsive Deep Ensembles are Bayesian [NeurIPS2021] - [PyTorch]
  • Bayesian Optimization with High-Dimensional Outputs [NeurIPS2021]
  • Residual Pathway Priors for Soft Equivariance Constraints [NeurIPS2021]
  • Dangers of Bayesian Model Averaging under Covariate Shift [NeurIPS2021] - [TensorFlow]
  • A Mathematical Analysis of Learning Loss for Active Learning in Regression [CVPR Workshop2021]
  • Why Are Bootstrapped Deep Ensembles Not Better? [NeurIPS Workshop]
  • Deep Convolutional Networks as shallow Gaussian Processes [ICLR2019]
  • On the accuracy of influence functions for measuring group effects [NeurIPS2018]
  • To Trust Or Not To Trust A Classifier [NeurIPS2018] - [Python]
  • Understanding Measures of Uncertainty for Adversarial Example Detection [UAI2018]

Journal

Arxiv

  • Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping [arXiv2022]
  • Efficient Gaussian Neural Processes for Regression [arXiv2021]
  • Dense Uncertainty Estimation [arXiv2021] - [PyTorch]
  • A higher-order swiss army infinitesimal jackknife [arXiv2019]

Bayesian-Methods

Conference

  • Training Bayesian Neural Networks with Sparse Subspace Variational Inference [ICLR2024]
  • Variational Bayesian Last Layers [ICLR2024]
  • A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors [ICLR2024]
  • Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning [CVPR2023]
  • Robustness to corruption in pre-trained Bayesian neural networks [ICLR2023]
  • Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift [NeurIPS2023] - [PyTorch]
  • Transformers Can Do Bayesian Inference [ICLR2022] - [PyTorch]
  • Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture [NeurIPS2022]
  • On Batch Normalisation for Approximate Bayesian Inference [AABI2021]
  • Activation-level uncertainty in deep neural networks [ICLR2021]
  • Laplace Redux – Effortless Bayesian Deep Learning [NeurIPS2021] - [PyTorch]
  • On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks [UAI2021]
  • Learnable uncertainty under Laplace approximations [UAI2021]
  • Bayesian Neural Networks with Soft Evidence [ICML Workshop2021] - [PyTorch]
  • TRADI: Tracking deep neural network weight distributions for uncertainty estimation [ECCV2020] - [PyTorch]
  • How Good is the Bayes Posterior in Deep Neural Networks Really? [ICML2020]
  • Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors [ICML2020] - [TensorFlow]
  • Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [ICML2020] - [PyTorch]
  • Bayesian Deep Learning and a Probabilistic Perspective of Generalization [NeurIPS2020]
  • A Simple Baseline for Bayesian Uncertainty in Deep Learning [NeurIPS2019] - [PyTorch] - [TorchUncertainty]
  • Bayesian Uncertainty Estimation for Batch Normalized Deep Networks [ICML2018] - [TensorFlow] - [TorchUncertainty]
  • Lightweight Probabilistic Deep Networks [CVPR2018] - [PyTorch]
  • A Scalable Laplace Approximation for Neural Networks [ICLR2018] - [Theano]
  • Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning [ICML2018]
  • Weight Uncertainty in Neural Networks [ICML2015]

Journal

  • Analytically Tractable Hidden-States Inference in Bayesian Neural Networks [JMLR2024]
  • Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification [TPAMI2023] - [PyTorch]
  • Bayesian modeling of uncertainty in low-level vision [IJCV1990]

Arxiv

  • Density Uncertainty Layers for Reliable Uncertainty Estimation [arXiv2023]

Ensemble-Methods

Conference

  • Input-gradient space particle inference for neural network ensembles [ICLR2024]
  • Fast Ensembling with Diffusion Schrödinger Bridge [ICLR2024]
  • Pathologies of Predictive Diversity in Deep Ensembles [ICLR2024]
  • Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization [ICML2023]
  • Bayesian Posterior Approximation With Stochastic Ensembles

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多