Graph-Adversarial-Learning

Graph-Adversarial-Learning

图对抗学习攻防技术与研究进展综述

该项目是一个图对抗学习综合资源库,收录2017年至今的攻击、防御和鲁棒性认证相关论文。资源按字母、年份和会议分类,并提供代码实现汇总。内容涵盖图神经网络攻击方法、防御策略和稳定性研究,为图对抗学习研究提供重要参考。

图对抗学习图神经网络攻击方法防御策略论文综述Github开源项目

⚔🛡 Awesome Graph Adversarial Learning

<img src="https://img.shields.io/badge/Contributions-Welcome-278ea5" alt="Contrib"/> <img src="https://img.shields.io/badge/Number%20of%20Papers-416-FF6F00" alt="PaperNum"/>

<a class="toc" id="table-of-contents"></a>

<img width =500 height =300 src="imgs/wordcloud.png" >

This repository contains Attack-related papers, Defense-related papers, Robustness Certification papers, etc., ranging from 2017 to 2021. If you find this repo useful, please cite: A Survey of Adversarial Learning on Graph, arXiv'20, Link

@article{chen2020survey, title={A Survey of Adversarial Learning on Graph}, author={Chen, Liang and Li, Jintang and Peng, Jiaying and Xie, Tao and Cao, Zengxu and Xu, Kun and He, Xiangnan and Zheng, Zibin and Wu, Bingzhe}, journal={arXiv preprint arXiv:2003.05730}, year={2020} }

👀Quick Look

The papers in this repo are categorized or sorted:

| By Alphabet | By Year | By Venue | Papers with Code |

If you want to get a quick look at the recently updated papers in the repository (in 30 days), you can refer to 📍this.

⚔Attack

2023

💨 Back to Top

2022

💨 Back to Top

  • Adversarial Attack on Graph Neural Networks as An Influence Maximization Problem, 📝WSDM, :octocat:Code
  • Inference Attacks Against Graph Neural Networks, 📝USENIX Security, :octocat:Code
  • Model Stealing Attacks Against Inductive Graph Neural Networks, 📝IEEE Symposium on Security and Privacy, :octocat:Code
  • Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, 📝WWW, :octocat:Code
  • Neighboring Backdoor Attacks on Graph Convolutional Network, 📝arXiv, :octocat:Code
  • Understanding and Improving Graph Injection Attack by Promoting Unnoticeability, 📝ICLR, :octocat:Code
  • Blindfolded Attackers Still Threatening: Strict Black-Box Adversarial Attacks on Graphs, 📝AAAI, :octocat:Code
  • More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks, 📝arXiv
  • Black-box Node Injection Attack for Graph Neural Networks, 📝arXiv, :octocat:Code
  • Interpretable and Effective Reinforcement Learning for Attacking against Graph-based Rumor Detection, 📝arXiv
  • Projective Ranking-based GNN Evasion Attacks, 📝arXiv
  • GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation, 📝arXiv
  • Model Extraction Attacks on Graph Neural Networks: Taxonomy and Realization, 📝Asia CCS, :octocat:Code
  • Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural Networks with Theoretical Guarantees, 📝CVPR, :octocat:Code
  • Transferable Graph Backdoor Attack, 📝RAID, :octocat:Code
  • Adversarial Robustness of Graph-based Anomaly Detection, 📝arXiv
  • Label specificity attack: Change your label as I want, 📝IJIS
  • AdverSparse: An Adversarial Attack Framework for Deep Spatial-Temporal Graph Neural Networks, 📝ICASSP
  • Surrogate Representation Learning with Isometric Mapping for Gray-box Graph Adversarial Attacks, 📝WSDM
  • Cluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors, 📝IJCAI, :octocat:Code
  • Label-Only Membership Inference Attack against Node-Level Graph Neural NetworksCluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors, 📝arXiv
  • Adversarial Camouflage for Node Injection Attack on Graphs, 📝arXiv
  • Are Gradients on Graph Structure Reliable in Gray-box Attacks?, 📝CIKM, :octocat:Code
  • Adversarial Camouflage for Node Injection Attack on Graphs, 📝arXiv
  • Graph Structural Attack by Perturbing Spectral Distance, 📝KDD
  • What Does the Gradient Tell When Attacking the Graph Structure, 📝arXiv
  • BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly Detection, 📝ICDM, :octocat:Code
  • Model Inversion Attacks against Graph Neural Networks, 📝TKDE
  • Sparse Vicious Attacks on Graph Neural Networks, 📝arXiv, :octocat:Code
  • Poisoning GNN-based Recommender Systems with Generative Surrogate-based Attacks, 📝ACM TIS
  • Dealing with the unevenness: deeper insights in graph-based attack and defense, 📝Machine Learning
  • Membership Inference Attacks Against Robust Graph Neural Network, 📝CSS
  • Adversarial Inter-Group Link Injection Degrades the Fairness of Graph Neural Networks, 📝ICDM, :octocat:Code
  • Revisiting Item Promotion in GNN-based Collaborative Filtering: A Masked Targeted Topological Attack Perspective, 📝arXiv
  • Link-Backdoor: Backdoor Attack on Link Prediction via Node Injection, 📝arXiv, :octocat:Code
  • Private Graph Extraction via Feature Explanations, 📝arXiv
  • Towards Secrecy-Aware Attacks Against Trust Prediction in Signed Graphs, 📝arXiv
  • Camouflaged Poisoning Attack on Graph Neural Networks, 📝ICDM
  • LOKI: A Practical Data Poisoning Attack Framework against Next Item Recommendations, 📝TKDE
  • Adversarial for Social Privacy: A Poisoning Strategy to Degrade User Identity Linkage, 📝arXiv
  • Exploratory Adversarial Attacks on Graph Neural Networks for Semi-Supervised Node Classification, 📝Pattern Recognition
  • GANI: Global Attacks on Graph Neural Networks via Imperceptible Node Injections, 📝arXiv, :octocat:Code
  • Motif-Backdoor: Rethinking the Backdoor Attack on Graph Neural Networks via Motifs, 📝arXiv
  • Are Defenses for Graph Neural Networks Robust?, 📝NeurIPS, :octocat:Code
  • Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation, 📝ECCV
  • Imperceptible Adversarial Attacks on Discrete-Time Dynamic Graph Models, 📝NeurIPS
  • Towards Reasonable Budget Allocation in Untargeted Graph Structure Attacks via Gradient Debias, 📝NeurIPS, :octocat:Code
  • Adversary for Social Good: Leveraging Attribute-Obfuscating Attack to Protect User Privacy on Social Networks, 📝SecureComm

2021

💨 Back to Top

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多