Project Icon

Graph-Adversarial-Learning

图对抗学习攻防技术与研究进展综述

该项目是一个图对抗学习综合资源库,收录2017年至今的攻击、防御和鲁棒性认证相关论文。资源按字母、年份和会议分类,并提供代码实现汇总。内容涵盖图神经网络攻击方法、防御策略和稳定性研究,为图对抗学习研究提供重要参考。

⚔🛡 Awesome Graph Adversarial Learning

Contrib PaperNum

This repository contains Attack-related papers, Defense-related papers, Robustness Certification papers, etc., ranging from 2017 to 2021. If you find this repo useful, please cite: A Survey of Adversarial Learning on Graph, arXiv'20, Link

@article{chen2020survey,
  title={A Survey of Adversarial Learning on Graph},
  author={Chen, Liang and Li, Jintang and Peng, Jiaying and Xie, 
        Tao and Cao, Zengxu and Xu, Kun and He, 
        Xiangnan and Zheng, Zibin and Wu, Bingzhe},
  journal={arXiv preprint arXiv:2003.05730},
  year={2020}
}

👀Quick Look

The papers in this repo are categorized or sorted:

| By Alphabet | By Year | By Venue | Papers with Code |

If you want to get a quick look at the recently updated papers in the repository (in 30 days), you can refer to 📍this.

⚔Attack

2023

💨 Back to Top

2022

💨 Back to Top

  • Adversarial Attack on Graph Neural Networks as An Influence Maximization Problem, 📝WSDM, :octocat:Code
  • Inference Attacks Against Graph Neural Networks, 📝USENIX Security, :octocat:Code
  • Model Stealing Attacks Against Inductive Graph Neural Networks, 📝IEEE Symposium on Security and Privacy, :octocat:Code
  • Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, 📝WWW, :octocat:Code
  • Neighboring Backdoor Attacks on Graph Convolutional Network, 📝arXiv, :octocat:Code
  • Understanding and Improving Graph Injection Attack by Promoting Unnoticeability, 📝ICLR, :octocat:Code
  • Blindfolded Attackers Still Threatening: Strict Black-Box Adversarial Attacks on Graphs, 📝AAAI, :octocat:Code
  • More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks, 📝arXiv
  • Black-box Node Injection Attack for Graph Neural Networks, 📝arXiv, :octocat:Code
  • Interpretable and Effective Reinforcement Learning for Attacking against Graph-based Rumor Detection, 📝arXiv
  • Projective Ranking-based GNN Evasion Attacks, 📝arXiv
  • GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation, 📝arXiv
  • Model Extraction Attacks on Graph Neural Networks: Taxonomy and Realization, 📝Asia CCS, :octocat:Code
  • Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural Networks with Theoretical Guarantees, 📝CVPR, :octocat:Code
  • Transferable Graph Backdoor Attack, 📝RAID, :octocat:Code
  • Adversarial Robustness of Graph-based Anomaly Detection, 📝arXiv
  • Label specificity attack: Change your label as I want, 📝IJIS
  • AdverSparse: An Adversarial Attack Framework for Deep Spatial-Temporal Graph Neural Networks, 📝ICASSP
  • Surrogate Representation Learning with Isometric Mapping for Gray-box Graph Adversarial Attacks, 📝WSDM
  • Cluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors, 📝IJCAI, :octocat:Code
  • Label-Only Membership Inference Attack against Node-Level Graph Neural NetworksCluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors, 📝arXiv
  • Adversarial Camouflage for Node Injection Attack on Graphs, 📝arXiv
  • Are Gradients on Graph Structure Reliable in Gray-box Attacks?, 📝CIKM, :octocat:Code
  • Adversarial Camouflage for Node Injection Attack on Graphs, 📝arXiv
  • Graph Structural Attack by Perturbing Spectral Distance, 📝KDD
  • What Does the Gradient Tell When Attacking the Graph Structure, 📝arXiv
  • BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly Detection, 📝ICDM, :octocat:Code
  • Model Inversion Attacks against Graph Neural Networks, 📝TKDE
  • Sparse Vicious Attacks on Graph Neural Networks, 📝arXiv, :octocat:Code
  • Poisoning GNN-based Recommender Systems with Generative Surrogate-based Attacks, 📝ACM TIS
  • Dealing with the unevenness: deeper insights in graph-based attack and defense, 📝Machine Learning
  • Membership Inference Attacks Against Robust Graph Neural Network, 📝CSS
  • Adversarial Inter-Group Link Injection Degrades the Fairness of Graph Neural Networks, 📝ICDM, :octocat:Code
  • Revisiting Item Promotion in GNN-based Collaborative Filtering: A Masked Targeted Topological Attack Perspective, 📝arXiv
  • Link-Backdoor: Backdoor Attack on Link Prediction via Node Injection, 📝arXiv, :octocat:Code
  • Private Graph Extraction via Feature Explanations, 📝arXiv
  • Towards Secrecy-Aware Attacks Against Trust Prediction in Signed Graphs, 📝arXiv
  • Camouflaged Poisoning Attack on Graph Neural Networks, 📝ICDM
  • LOKI: A Practical Data Poisoning Attack Framework against Next Item Recommendations, 📝TKDE
  • Adversarial for Social Privacy: A Poisoning Strategy to Degrade User Identity Linkage, 📝arXiv
  • Exploratory Adversarial Attacks on Graph Neural Networks for Semi-Supervised Node Classification, 📝Pattern Recognition
  • GANI: Global Attacks on Graph Neural Networks via Imperceptible Node Injections, 📝arXiv, :octocat:Code
  • Motif-Backdoor: Rethinking the Backdoor Attack on Graph Neural Networks via Motifs, 📝arXiv
  • Are Defenses for Graph Neural Networks Robust?, 📝NeurIPS, :octocat:Code
  • Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation, 📝ECCV
  • Imperceptible Adversarial Attacks on Discrete-Time Dynamic Graph Models, 📝NeurIPS
  • Towards Reasonable Budget Allocation in Untargeted Graph Structure Attacks via Gradient Debias, 📝NeurIPS, :octocat:Code
  • Adversary for Social Good: Leveraging Attribute-Obfuscating Attack to Protect User Privacy on Social Networks, 📝SecureComm

2021

💨 Back to Top

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号