Llemma 开源数学语言模型助力数学推理突破
Llemma是一个专为数学领域开发的开源语言模型。该项目基于Proof-Pile-2数据集训练,提供7B和34B两种规模的模型版本。Llemma在数学问题解决和定理证明等任务中表现优异,为数学研究和教育领域提供了有力的AI支持。项目不仅开源了模型,还包括数据集和相关代码,促进了数学AI技术的进步。
Llemma
: 一个面向数学的开放语言模型ArXiv | 模型 | 数据 | 代码 | 博客 | 样本浏览器
这是Llemma: 一个面向数学的开放语言模型 [Azerbayev et al 2023]的代码仓库。
本仓库包含与以下成果相关的数据和训练代码:
名称 | HF Hub 链接 |
---|---|
Llemma 7b | EleutherAI/llemma_7b |
Llemma 34b | EleutherAI/llemma_34b |
Proof-Pile-2 | EleutherAI/ProofPile2 |
AlgebraicStack | EleutherAI/AlgebraicStack |
本仓库还包含与论文中描述的重叠、微调和定理证明实验相关的子模块。 额外的评估代码位于Eleuther LM Evaluation Harness的一个分支中。
本仓库包含以下目录:
proof_pile_2
: 用于下载和预处理数据的脚本。gpt-neox
: 包含修改后的EleutherAI/gpt-neox
分支的git子模 块。lm-evaluation-harness
: 除formal2formal定理证明外的所有评估代码。llemma_formal2formal
: 包含formal2formal实验脚本的git子模块。overlap
: 包含重叠和记忆分析的git子模块。finetunes
: 包含微调实验脚本的git子模块。由于本项目包含子模块,您应该使用--recurse-submodules
标志克隆此项目,或者在克隆项目后在项目目录中运行git submodule update --init --recursive
。运行git pull
后,您还应该运行git submodule update
。
请引用以下内容:
@article{azerbayev2023llemma,
title={Llemma: An Open Language Model For Mathematics},
author={Azerbayev, Zhangir and Schoelkopf, Hailey and Paster, Keiran and Dos Santos, Marco and McAleer, Stephen and Jiang, Albert Q. and Deng, Jia and Biderman, Stella and Welleck, Sean},
journal={arXiv preprint arXiv:2310.06786},
year={2023}
}
您可能还对引用我们的训练数据感兴趣,这些数据是新数据和以下来源数据的混合:
@article{paster2023openwebmath,
title={OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text},
author={Paster, Keiran and Santos, Marco Dos and Azerbayev, Zhangir and Ba, Jimmy},
journal={arXiv preprint arXiv:2310.06786},
year={2023}
}
@software{together2023redpajama,
author = {Together Computer},
title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset},
month = April,
year = 2023,
url = {https://github.com/togethercomputer/RedPajama-Data}
}
@article{kocetkov2022stack,
title={The stack: 3 tb of permissively licensed source code},
author={Kocetkov, Denis and Li, Raymond and Allal, Loubna Ben and Li, Jia and Mou, Chenghao and Ferrandis, Carlos Mu{\~n}oz and Jernite, Yacine and Mitchell, Margaret and Hughes, Sean and Wolf, Thomas and Bahdanau, Dzmitry and von Werra, Leandro and de Vries, Harm},
journal={arXiv preprint arXiv:2211.15533},
year={2022}
}
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号