FlexGen: 使用单个GPU对大型语言模型进行高吞吐量生成推理 [论文]
FlexGen是一个用于在有限的GPU内存下运行大型语言模型的高吞吐量生成引擎。通过IO高效卸载、压缩和大有效批量,FlexGen实现了高吞吐量的生成。
近年来,大型语言模型(LLM)在广泛的任务中表现出色。LLM不仅被应用于交互式应用(如聊天),还被广泛应用于许多“后台”任务。这些任务包括基准测试、信息提取、数据整理和表单处理。
这些应用的一个关键特征是它们是面向吞吐量的:它们需要对数百万个标记进行批量的LLM推理,例如公司语料库中的所有私密文档,或HELM基准中的所有任务。这些工作负载对延迟不太敏感——用户启动一个作业并让它运行一整夜——但增加吞吐量对于降低成本至关重要。吞吐量是整个作业运行时(可能是数小时)内每秒处理的标记数的度量。面向吞吐量的工作负载提供了用更高吞吐量来权衡延迟的机会,这使得利用低成本的普通GPU变得更加容易。
FlexGen的目标是创建一个高吞吐量系统,以便在低成本硬件(如单个普通GPU而非昂贵的系统)上为面向吞吐量的任务启用新的、令人兴奋的基础模型应用。
查看FlexGen在单个普通GPU上运行的示例,包括基准测试和数据整理。
❌ 局限性。作为一个基于卸载、运行于较弱GPU上的系统,FlexGen也有其局限性。与拥有足够强大的GPU以容纳整个模型的情况相比,FlexGen可能显著较慢,尤其是在小批量的情况下。FlexGen主要针对面向吞吐量的批处理设置(例如批量分类或从大量文档中提取信息)进行了优化,适用于单个GPU。
这个项目得益于以下合作的支持:
<a href="https://cs.stanford.edu/"><img src="https://yellow-cdn.veclightyear.com/2b54e442/7bd48afe-bab9-4f04-beba-a4a39126ba95.png" height="20"></a> <a href="https://sky.cs.berkeley.edu/"><img src="https://yellow-cdn.veclightyear.com/2b54e442/00aaad63-de12-46fa-8bcf-46c14b613695.png" height="22"></a> <a href="https://www.andrew.cmu.edu/user/beidic/"><img src="https://upload.wikimedia.org/wikipedia/commons/9/9b/Carnegie_Mellon_wordmark.svg" height="20"></a> <a href="https://www.together.xyz/"><img src="https://yellow-cdn.veclightyear.com/2b54e442/2df596ca-ba67-4061-9e27-2a21f6948f35.png" height="20"></a> <a href="https://research.yandex.com/"><img src="https://yellow-cdn.veclightyear.com/2b54e442/9b8a84f0-a24c-4797-8d74-32b9e6d4f555.png" height="20"></a> <a href="https://ds3lab.inf.ethz.ch/"><img src="https://yellow-cdn.veclightyear.com/2b54e442/e62c2abd-2c47-4e4f-88cc-a7e226f00f06.png" height="20"></a>
要求:
pip install flexgen
git clone https://github.com/FMInference/FlexGen.git
cd FlexGen
pip install -e .
要开始使用,可以先尝试一个小模型如OPT-1.3B。它适合在单个GPU上运行,因此无需卸载。FlexGen会自动从Hugging Face下载权重。
python3 -m flexgen.flex_opt --model facebook/opt-1.3b
您应该会看到由OPT-1.3B生成的文本以及基准测试结果。
要运行像OPT-30B这样的大型模型,您需要使用CPU卸载。您可以尝试以下命令。--percent
参数分别指定参数、注意力缓存和隐藏状态的卸载策略。该参数的确切含义可以在这里找到。
python3 -m flexgen.flex_opt --model facebook/opt-30b --percent 0 100 100 0 100 0
要运行OPT-175B,您需要从metaseq下载权重并将其转换为Alpa格式。然后,您可以尝试将所有权重卸载到磁盘上:
python3 -m flexgen.flex_opt --model facebook/opt-175b --percent 0 0 100 0 100 0 --offload-dir YOUR_SSD_FOLDER
FlexGen可以集成到HELM中,作为其执行后台。您可以使用以下命令在单个T4(16GB)GPU和200GB的DRAM上运行一个大规模多任务语言理解(MMLU)场景。
pip install crfm-helm
python3 -m flexgen.apps.helm_run --description mmlu:model=text,subject=abstract_algebra,data_augmentation=canonical --pad-to-seq-len 512 --model facebook/opt-30b --percent 20 80 0 100 0 100 --gpu-batch-size 48 --num-gpu-batches 3 --max-eval-instance 100
请注意,只有部分HELM场景经过测试。查看更多测试场景这里。
您可以按照这里的说明,运行本文中的示例,'Can Foundation Models Wrangle Your Data?'。
如果你有多台带有GPU的机器,FlexGen可以结合卸载与流水线并行来实现扩展。例如,如果你有2个GPU,但总的GPU内存小于模型大小,你仍然需要卸载。FlexGen允许你使用这2个GPU进行流水线并行,以加速生成。但要实现扩展的性能,你需要在分布式机器上配置GPU。参见此处的示例。
我们在completion.py中展示了FlexGen API的使用示例。此示例展示了如何对两个句子进行生成。为了从FlexGen中获得最佳吞吐量,你通常需要批处理更多的句子。
FlexGen有一个遵循Hugging Face的transformers风格的生成API。
output_ids = model.generate( input_ids, do_sample=True, temperature=0.7, max_new_tokens=32, stop=stop)
你可以使用以下示例命令。如果你没有足够的GPU/CPU内存,请参阅处理内存不足部分。
# 使用OPT-6.7B进行补全。你需要至少15GB的GPU内存。
python3 -m flexgen.apps.completion --model facebook/opt-6.7b
# 使用OPT-30B进行补全。你需要大约90GB的CPU内存。
python3 -m flexgen.apps.completion --model facebook/opt-30b --percent 0 100 100 0 100 0
# 使用经过指令微调的OPT-IML-MAX-30B进行补全。你需要大约90GB的CPU内存。
python3 -m flexgen.apps.completion --model facebook/opt-iml-max-30b --percent 0 100 100 0 100 0
--percent
参数?我们将会发布一个自动策略优化器,但目前你需要手动尝试几种策略。高吞吐量生成的理念是尽可能将参数和注意力缓存卸载到CPU和磁盘上,如果有必要的话。你可以在我们的基准测试中查看参考策略此处。为了避免内存不足,你可以调整--percent
参数,以将更多的张量卸载到CPU和磁盘上。
如果你没有足够的GPU/CPU内存,可以尝试以下几种方法。它们可以节省更多的内存,但运行速度较慢。
--pin-weight 0
来不固定权重。这可以将CPU上的权重内存使用量减少约20%或更多。--compress-weight
来启用权重压缩。这可以将权重内存使用量减少约70%。--percent 0 0 100 0 100 0
将所有权重卸载到磁盘。这需要非常少的CPU和GPU内存。对应的有效批量大小和最低卸载设备在括号中。更多详情请参见此处。
系统 | OPT-6.7B | OPT-30B | OPT-175B |
---|---|---|---|
Hugging Face Accelerate | 25.12 (2个在GPU上) | 0.62 (8个在CPU上) | 0.01 (2个在磁盘上) |
DeepSpeed ZeRO-Inference | 9.28 (16个在CPU上) | 0.60 (4个在CPU上) | 0.01 (1个在磁盘上) |
Petals | 8.25 (2个在GPU上) | 2.84 (2个在GPU上) | 0.08 (2个在GPU上) |
FlexGen | 25.26 (2个在GPU上) | 7.32 (144个在CPU上) | 0.69 (256个在磁盘上) |
FlexGen with Compression | 29.12 (72个在GPU上) | 8.38 (512个在CPU上) | 1.12 (144个在CPU上) |
如何重现。
下图显示了三种基于卸载的系统在OPT-175B(左)和OPT-30B(右)上的延迟和吞吐量权衡。FlexGen通过显著提高这两种模型的最大吞吐量,达到了新的帕累托最优前沿。由于内存不足,其他系统无法进一步提高吞吐量。"FlexGen(c)"表示使用压缩的FlexGen。
<img src="https://yellow-cdn.veclightyear.com/2b54e442/260b7de1-f09a-4313-9740-8ca2172ed7fd.jpg" alt="image" width="500"></img>
通过聚合来自GPU、CPU和磁盘的内存和计算资源,FlexGen可以在各种硬件资源约束下灵活配置。通过线性规划优化器,它搜索存储和访问张量(包括权重、激活和注意力键/值(KV)缓存)的最佳模式。FlexGen进一步将权重和KV缓存压缩至4位,且精度损失可以忽略不计。
FlexGen的一个关键理念是利用延迟-吞吐量权衡。实现低延迟对于卸载方法来说本质上是一个挑战,但卸载的I/O效率可以在面向吞吐量的场景中大大提升(见上图)。FlexGen利用块调度来重用权重并将I/O与计算重叠,如下图(b)所示,而其他基线系统则使用效率较低的逐行调度,如下图(a)所示。
<img src="https://yellow-cdn.veclightyear.com/2b54e442/16d932df-9cca-4a5e-8a07-70c4ab52eebc.jpg" alt="image" width="500"></img>
更多技术细节请参见我们的论文。
我们计划开发以下功能。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号