A collection of papers, implementations, datasets, and tools for deep and non-deep community detection.
Paper Title | Venue | Year | Materials |
---|---|---|---|
A comprehensive survey on community detection with deep learning | IEEE TNNLS | 2022 | [Paper] <br> [Report] <br> [Supplementary] |
A survey of community detection approaches: From statistical modeling to deep learning | IEEE TKDE | 2021 | [Paper] |
Deep learning for community detection: Progress, challenges and opportunities | IJCAI | 2020 | [Paper] <br>[Report] |
A survey of community detection methods in multilayer networks | Data Min. Knowl. Discov. | 2020 | [Paper] |
Community detection in node-attributed social networks: A survey | Comput. Sci. Rev. | 2020 | [Paper] |
Community detection in networks: A multidisciplinary review | J. Netw. Comput. Appl. | 2018 | [Paper] |
Community discovery in dynamic networks: A survey | ACM Comput. Surv. | 2018 | [Paper] |
Evolutionary computation for community detection in networks: A review | IEEE TEVC | 2018 | [Paper] |
Metrics for community analysis: A survey | ACM Comput. Surv. | 2017 | [Paper] |
Network community detection: A review and visual survey | Preprint | 2017 | [Paper] |
Community detection in networks: A user guide | Phys. Rep. | 2016 | [Paper] |
Community detection in social networks | WIREs Data Min. Knowl. Discov. | 2016 | [Paper] |
Overlapping community detection in networks: The state-of-the-art and comparative study | ACM Comput. Surv. | 2013 | [Paper] |
Clustering and community detection in directed networks: A survey | Phys. Rep. | 2013 | [Paper] |
Community detection in graphs | Phys. Rep. | 2010 | [Paper] |
Paper Title | Venue | Year | Method | Materials |
---|---|---|---|---|
Inductive representation learning via CNN for partially-unseen attributed networks | IEEE TNSE | 2021 | IEPAN | [Paper] |
A deep learning approach for semi-supervised community detection in online social networks | Knowl.-Based Syst. | 2021 | SparseConv2D | [Paper] |
Edge classification based on convolutional neural networks for community detection in complex network | Physica A | 2020 | ComNet-R | [Paper] |
A deep learning based community detection approach | SAC | 2019 | SparseConv | [Paper] |
Deep community detection in topologically incomplete networks | Physica A | 2017 | Xin et al. | [Paper] |
Paper Title | Venue | Year | Method | Materials |
---|---|---|---|---|
Complex exponential graph convolutional networks | Inf. Sci. | 2023 | CEGCN | [Paper] [Code] |
Community detection based on community perspective and graph convolutional network | Expert Syst. Appl. | 2023 | CPGC | [Paper] |
Heterogeneous question answering community detection based on graph neural network | Inf. Sci. | 2023 | HCDBG | [Paper] |
Overlapping community detection on complex networks with graph convolutional networks | Comput. Commun. | 2023 | CDMG | [Paper] |
Deep MinCut: Learning node embeddings from detecting communities | Pattern Recognit. | 2022 | DMC | [Paper] |
End-to-end modularity-based community co-partition in bipartite networks | CIKM | 2022 | BiCoN+GCN | [Paper] |
CLARE: A semi-supervised community detection algorithm | KDD | 2022 | CLARE | [Paper] [Code] |
Efficient graph convolution for joint node representation learning and clustering | WSDM | 2022 | GCC | [Paper] [Code] |
Geometric graph representation learning via maximizing rate reduction | WWW | 2022 | $G^2R$ | [Paper] [Code] |
RepBin: Constraint-based graph representation learning for metagenomic binning | AAAI | 2022 | RepBin | [Paper] [Code] |
SSSNET: Semi-supervised signed network clustering | SDM | 2022 | SSSNET | [Paper] [Code] |
Learning Guarantees for Graph Convolutional Networks on The Stochastic Block Model | ICLR | 2022 | GCN-SBM | [Paper] |
When convolutional network meets temporal heterogeneous graphs: An effective community detection method | IEEE TKDE | 2021 | THGCN | [Paper] |
Multi-view contrastive graph clustering | NIPS | 2021 | MCGC | [paper] [Code] |
Graph debiased contrastive learning with joint representation clustering | IJCAI | 2021 | Zhao et al. | [Paper] |
Spectral embedding network for attributed graph clustering | Neural Netw. | 2021 | SENet | [Paper] |
Unsupervised learning for community detection in attributed networks based on graph convolutional network | Neurocomputing | 2021 | SGCN | [Paper] |
Adaptive graph encoder for attributed graph embedding | KDD | 2020 | AGE | [Paper][Code] |
CommDGI: Community detection oriented deep graph infomax | CIKM | 2020 | CommDGI | [Paper] |
Going deep: Graph convolutional ladder-shape networks | AAAI | 2020 | GCLN | [Paper] |
Independence promoted graph disentangled networks | AAAI | 2020 | IPGDN | [Paper] |
Supervised community detection with line graph neural networks | ICLR | 2019 | LGNN | [Paper][Code] |
Graph convolutional networks meet Markov random fields: Semi-supervised community detection in attribute networks | AAAI | 2019 | MRFasGCN | [Paper] |
Overlapping community detection with graph neural networks | DLG Workshop, KDD | 2019 | NOCD | [Paper][Code] |
Attributed graph clustering via adaptive graph convolution | IJCAI | 2019 | AGC | [Paper][Code] |
CayleyNets: Graph convolutional neural networks with complex rational spectral filters | IEEE TSP | 2019 | CayleyNets | [Paper][Code] |
Paper Title | Venue | Year | Method | Materials |
---|---|---|---|---|
CSAT: Contrastive sampling-aggregating transformer for community detection in attribute-missing networks | IEEE TCSS | 2023 | CSAT | [Paper] |
A graph-enhanced attention model for community detection in multiplex networks | Expert Syst. Appl. | 2023 | GEAM | [Paper][Code] |
Hierarchical attention network for attributed community detection of joint representation | Neural Comput. Appl. | 2022 | HiAN | [Paper] |
Detecting communities from heterogeneous graphs: A context path-based graph neural network model | CIKM | 2021 | <nobr> CP-GNN <nobr> | [Paper][Code] |
HDMI: High-order deep multiplex infomax | WWW | 2021 | HDMI | [Paper][Code] |
Self-supervised heterogeneous graph neural network with co-contrastive learning | KDD | 2021 | HeCo | [Paper][Code] |
Unsupervised attributed multiplex network embedding | AAAI | 2020 | DMGI | [Paper][Code] |
MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding | WWW | 2020 | MAGNN | [Paper] [Code] |
Paper Title | Venue | Year | Method | Materials |
---|---|---|---|---|
CANE: Community-aware network embedding via adversarial training | Knowl. Inf. Syst. | 2021 | CANE | [Paper] |
Self-training enhanced: Network embedding and overlapping community detection with adversarial learning | IEEE TNNLS | 2021 | ACNE <br> ACNE-ST <br> | [Paper] |
Adversarial Learning of Balanced Triangles for Accurate Community Detection on Signed Networks | ICDM | 2021 | ABC | [Paper] |
SEAL: Learning heuristics for community detection with generative adversarial networks | KDD | 2020 | SEAL | [Paper][Code] |
Multi-class imbalanced graph convolutional network learning | IJCAI | 2020 | DR-GCN | [Paper] |
JANE: Jointly adversarial network embedding | IJCAI | 2020 | JANE | [Paper] |
ProGAN: Network embedding via |
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能 高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号