Awesome-Deep-Community-Detection

Awesome-Deep-Community-Detection

社区发现中的深度学习方法综述与资源集

本项目汇集了深度学习在社区发现领域的最新研究成果和资源。内容包括综述论文、基于卷积网络、图注意力网络和生成对抗网络的方法,以及相关数据集和工具。同时收录了传统的非深度学习社区发现技术,为研究人员提供全面参考。项目整理了大量论文、代码实现和相关资源,是了解该研究前沿的重要参考。

社区检测深度学习图神经网络网络嵌入复杂网络Github开源项目

Awesome Deep Community Detection

Awesome PRs Welcome GitHub stars GitHub forks

A collection of papers, implementations, datasets, and tools for deep and non-deep community detection.


Traditional Methods VS. Deep Learninig-based Methods

taxonomy


A Timeline of Community Detection Development

timeline


Survey

Paper TitleVenueYearMaterials
A comprehensive survey on community detection with deep learningIEEE TNNLS2022[Paper] <br> [Report] <br> [Supplementary]
A survey of community detection approaches: From statistical modeling to deep learningIEEE TKDE2021[Paper]
Deep learning for community detection: Progress, challenges and opportunitiesIJCAI2020[Paper] <br>[Report]
A survey of community detection methods in multilayer networksData Min. Knowl. Discov.2020[Paper]
Community detection in node-attributed social networks: A surveyComput. Sci. Rev.2020[Paper]
Community detection in networks: A multidisciplinary reviewJ. Netw. Comput. Appl.2018[Paper]
Community discovery in dynamic networks: A surveyACM Comput. Surv.2018[Paper]
Evolutionary computation for community detection in networks: A reviewIEEE TEVC2018[Paper]
Metrics for community analysis: A surveyACM Comput. Surv.2017[Paper]
Network community detection: A review and visual surveyPreprint2017[Paper]
Community detection in networks: A user guidePhys. Rep.2016[Paper]
Community detection in social networksWIREs Data Min. Knowl. Discov.2016[Paper]
Overlapping community detection in networks: The state-of-the-art and comparative studyACM Comput. Surv.2013[Paper]
Clustering and community detection in directed networks: A surveyPhys. Rep.2013[Paper]
Community detection in graphsPhys. Rep.2010[Paper]

Convolutional Networks-based Community Detection

CNN-based Community Detection

Paper TitleVenueYearMethodMaterials
Inductive representation learning via CNN for partially-unseen attributed networksIEEE TNSE2021IEPAN[Paper]
A deep learning approach for semi-supervised community detection in online social networksKnowl.-Based Syst.2021SparseConv2D[Paper]
Edge classification based on convolutional neural networks for community detection in complex networkPhysica A2020ComNet-R[Paper]
A deep learning based community detection approachSAC2019SparseConv[Paper]
Deep community detection in topologically incomplete networksPhysica A2017Xin et al.[Paper]

GCN-based Community Detection

Paper TitleVenueYearMethodMaterials
Complex exponential graph convolutional networksInf. Sci.2023CEGCN[Paper] [Code]
Community detection based on community perspective and graph convolutional networkExpert Syst. Appl.2023CPGC[Paper]
Heterogeneous question answering community detection based on graph neural networkInf. Sci.2023HCDBG[Paper]
Overlapping community detection on complex networks with graph convolutional networksComput. Commun.2023CDMG[Paper]
Deep MinCut: Learning node embeddings from detecting communitiesPattern Recognit.2022DMC[Paper]
End-to-end modularity-based community co-partition in bipartite networksCIKM2022BiCoN+GCN[Paper]
CLARE: A semi-supervised community detection algorithmKDD2022CLARE[Paper] [Code]
Efficient graph convolution for joint node representation learning and clusteringWSDM2022GCC[Paper] [Code]
Geometric graph representation learning via maximizing rate reductionWWW2022$G^2R$[Paper] [Code]
RepBin: Constraint-based graph representation learning for metagenomic binningAAAI2022RepBin[Paper] [Code]
SSSNET: Semi-supervised signed network clusteringSDM2022SSSNET[Paper] [Code]
Learning Guarantees for Graph Convolutional Networks on The Stochastic Block ModelICLR2022GCN-SBM[Paper]
When convolutional network meets temporal heterogeneous graphs: An effective community detection methodIEEE TKDE2021THGCN[Paper]
Multi-view contrastive graph clusteringNIPS2021MCGC[paper] [Code]
Graph debiased contrastive learning with joint representation clusteringIJCAI2021Zhao et al.[Paper]
Spectral embedding network for attributed graph clusteringNeural Netw.2021SENet[Paper]
Unsupervised learning for community detection in attributed networks based on graph convolutional networkNeurocomputing2021SGCN[Paper]
Adaptive graph encoder for attributed graph embeddingKDD2020AGE[Paper][Code]
CommDGI: Community detection oriented deep graph infomaxCIKM2020CommDGI[Paper]
Going deep: Graph convolutional ladder-shape networksAAAI2020GCLN[Paper]
Independence promoted graph disentangled networksAAAI2020IPGDN[Paper]
Supervised community detection with line graph neural networksICLR2019LGNN[Paper][Code]
Graph convolutional networks meet Markov random fields: Semi-supervised community detection in attribute networksAAAI2019MRFasGCN[Paper]
Overlapping community detection with graph neural networksDLG Workshop, KDD2019NOCD[Paper][Code]
Attributed graph clustering via adaptive graph convolutionIJCAI2019AGC[Paper][Code]
CayleyNets: Graph convolutional neural networks with complex rational spectral filtersIEEE TSP2019CayleyNets[Paper][Code]

Graph Attention Network-based Community Detection

Paper TitleVenueYearMethodMaterials
CSAT: Contrastive sampling-aggregating transformer for community detection in attribute-missing networksIEEE TCSS2023CSAT[Paper]
A graph-enhanced attention model for community detection in multiplex networksExpert Syst. Appl.2023GEAM[Paper][Code]
Hierarchical attention network for attributed community detection of joint representationNeural Comput. Appl.2022HiAN[Paper]
Detecting communities from heterogeneous graphs: A context path-based graph neural network modelCIKM2021<nobr> CP-GNN <nobr>[Paper][Code]
HDMI: High-order deep multiplex infomaxWWW2021HDMI[Paper][Code]
Self-supervised heterogeneous graph neural network with co-contrastive learningKDD2021HeCo[Paper][Code]
Unsupervised attributed multiplex network embeddingAAAI2020DMGI[Paper][Code]
MAGNN: Metapath aggregated graph neural network for heterogeneous graph embeddingWWW2020MAGNN[Paper] [Code]

Graph Adversarial Network-based Community Detection

Paper TitleVenueYearMethodMaterials
CANE: Community-aware network embedding via adversarial trainingKnowl. Inf. Syst.2021CANE[Paper]
Self-training enhanced: Network embedding and overlapping community detection with adversarial learningIEEE TNNLS2021ACNE <br> ACNE-ST <br>[Paper]
Adversarial Learning of Balanced Triangles for Accurate Community Detection on Signed NetworksICDM2021ABC[Paper]
SEAL: Learning heuristics for community detection with generative adversarial networksKDD2020SEAL[Paper][Code]
Multi-class imbalanced graph convolutional network learningIJCAI2020DR-GCN[Paper]
JANE: Jointly adversarial network embeddingIJCAI2020JANE[Paper]
ProGAN: Network embedding via

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多