A collection of papers, implementations, datasets, and tools for deep and non-deep community detection.
Paper Title | Venue | Year | Materials |
---|---|---|---|
A comprehensive survey on community detection with deep learning | IEEE TNNLS | 2022 | [Paper] <br> [Report] <br> [Supplementary] |
A survey of community detection approaches: From statistical modeling to deep learning | IEEE TKDE | 2021 | [Paper] |
Deep learning for community detection: Progress, challenges and opportunities | IJCAI | 2020 | [Paper] <br>[Report] |
A survey of community detection methods in multilayer networks | Data Min. Knowl. Discov. | 2020 | [Paper] |
Community detection in node-attributed social networks: A survey | Comput. Sci. Rev. | 2020 | [Paper] |
Community detection in networks: A multidisciplinary review | J. Netw. Comput. Appl. | 2018 | [Paper] |
Community discovery in dynamic networks: A survey | ACM Comput. Surv. | 2018 | [Paper] |
Evolutionary computation for community detection in networks: A review | IEEE TEVC | 2018 | [Paper] |
Metrics for community analysis: A survey | ACM Comput. Surv. | 2017 | [Paper] |
Network community detection: A review and visual survey | Preprint | 2017 | [Paper] |
Community detection in networks: A user guide | Phys. Rep. | 2016 | [Paper] |
Community detection in social networks | WIREs Data Min. Knowl. Discov. | 2016 | [Paper] |
Overlapping community detection in networks: The state-of-the-art and comparative study | ACM Comput. Surv. | 2013 | [Paper] |
Clustering and community detection in directed networks: A survey | Phys. Rep. | 2013 | [Paper] |
Community detection in graphs | Phys. Rep. | 2010 | [Paper] |
Paper Title | Venue | Year | Method | Materials |
---|---|---|---|---|
Inductive representation learning via CNN for partially-unseen attributed networks | IEEE TNSE | 2021 | IEPAN | [Paper] |
A deep learning approach for semi-supervised community detection in online social networks | Knowl.-Based Syst. | 2021 | SparseConv2D | [Paper] |
Edge classification based on convolutional neural networks for community detection in complex network | Physica A | 2020 | ComNet-R | [Paper] |
A deep learning based community detection approach | SAC | 2019 | SparseConv | [Paper] |
Deep community detection in topologically incomplete networks | Physica A | 2017 | Xin et al. | [Paper] |
Paper Title | Venue | Year | Method | Materials |
---|---|---|---|---|
Complex exponential graph convolutional networks | Inf. Sci. | 2023 | CEGCN | [Paper] [Code] |
Community detection based on community perspective and graph convolutional network | Expert Syst. Appl. | 2023 | CPGC | [Paper] |
Heterogeneous question answering community detection based on graph neural network | Inf. Sci. | 2023 | HCDBG | [Paper] |
Overlapping community detection on complex networks with graph convolutional networks | Comput. Commun. | 2023 | CDMG | [Paper] |
Deep MinCut: Learning node embeddings from detecting communities | Pattern Recognit. | 2022 | DMC | [Paper] |
End-to-end modularity-based community co-partition in bipartite networks | CIKM | 2022 | BiCoN+GCN | [Paper] |
CLARE: A semi-supervised community detection algorithm | KDD | 2022 | CLARE | [Paper] [Code] |
Efficient graph convolution for joint node representation learning and clustering | WSDM | 2022 | GCC | [Paper] [Code] |
Geometric graph representation learning via maximizing rate reduction | WWW | 2022 | $G^2R$ | [Paper] [Code] |
RepBin: Constraint-based graph representation learning for metagenomic binning | AAAI | 2022 | RepBin | [Paper] [Code] |
SSSNET: Semi-supervised signed network clustering | SDM | 2022 | SSSNET | [Paper] [Code] |
Learning Guarantees for Graph Convolutional Networks on The Stochastic Block Model | ICLR | 2022 | GCN-SBM | [Paper] |
When convolutional network meets temporal heterogeneous graphs: An effective community detection method | IEEE TKDE | 2021 | THGCN | [Paper] |
Multi-view contrastive graph clustering | NIPS | 2021 | MCGC | [paper] [Code] |
Graph debiased contrastive learning with joint representation clustering | IJCAI | 2021 | Zhao et al. | [Paper] |
Spectral embedding network for attributed graph clustering | Neural Netw. | 2021 | SENet | [Paper] |
Unsupervised learning for community detection in attributed networks based on graph convolutional network | Neurocomputing | 2021 | SGCN | [Paper] |
Adaptive graph encoder for attributed graph embedding | KDD | 2020 | AGE | [Paper][Code] |
CommDGI: Community detection oriented deep graph infomax | CIKM | 2020 | CommDGI | [Paper] |
Going deep: Graph convolutional ladder-shape networks | AAAI | 2020 | GCLN | [Paper] |
Independence promoted graph disentangled networks | AAAI | 2020 | IPGDN | [Paper] |
Supervised community detection with line graph neural networks | ICLR | 2019 | LGNN | [Paper][Code] |
Graph convolutional networks meet Markov random fields: Semi-supervised community detection in attribute networks | AAAI | 2019 | MRFasGCN | [Paper] |
Overlapping community detection with graph neural networks | DLG Workshop, KDD | 2019 | NOCD | [Paper][Code] |
Attributed graph clustering via adaptive graph convolution | IJCAI | 2019 | AGC | [Paper][Code] |
CayleyNets: Graph convolutional neural networks with complex rational spectral filters | IEEE TSP | 2019 | CayleyNets | [Paper][Code] |
Paper Title | Venue | Year | Method | Materials |
---|---|---|---|---|
CSAT: Contrastive sampling-aggregating transformer for community detection in attribute-missing networks | IEEE TCSS | 2023 | CSAT | [Paper] |
A graph-enhanced attention model for community detection in multiplex networks | Expert Syst. Appl. | 2023 | GEAM | [Paper][Code] |
Hierarchical attention network for attributed community detection of joint representation | Neural Comput. Appl. | 2022 | HiAN | [Paper] |
Detecting communities from heterogeneous graphs: A context path-based graph neural network model | CIKM | 2021 | <nobr> CP-GNN <nobr> | [Paper][Code] |
HDMI: High-order deep multiplex infomax | WWW | 2021 | HDMI | [Paper][Code] |
Self-supervised heterogeneous graph neural network with co-contrastive learning | KDD | 2021 | HeCo | [Paper][Code] |
Unsupervised attributed multiplex network embedding | AAAI | 2020 | DMGI | [Paper][Code] |
MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding | WWW | 2020 | MAGNN | [Paper] [Code] |
Paper Title | Venue | Year | Method | Materials |
---|---|---|---|---|
CANE: Community-aware network embedding via adversarial training | Knowl. Inf. Syst. | 2021 | CANE | [Paper] |
Self-training enhanced: Network embedding and overlapping community detection with adversarial learning | IEEE TNNLS | 2021 | ACNE <br> ACNE-ST <br> | [Paper] |
Adversarial Learning of Balanced Triangles for Accurate Community Detection on Signed Networks | ICDM | 2021 | ABC | [Paper] |
SEAL: Learning heuristics for community detection with generative adversarial networks | KDD | 2020 | SEAL | [Paper][Code] |
Multi-class imbalanced graph convolutional network learning | IJCAI | 2020 | DR-GCN | [Paper] |
JANE: Jointly adversarial network embedding | IJCAI | 2020 | JANE | [Paper] |
ProGAN: Network embedding via |
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系 列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号