DISC-FinLLM

DISC-FinLLM

金融领域的多专家智能系统

DISC-FinLLM是复旦大学开发的金融领域大模型,由金融咨询、文本分析、计算和知识检索问答四个模组构成。该模型基于25万条数据的DISC-Fin-SFT数据集训练,在金融NLP任务、人类试题、资料分析和时事分析等多个评测中表现出色。DISC-FinLLM能为金融领域提供全面支持,适用于多种应用场景。

DISC-FinLLM金融大模型微调数据集金融咨询Github开源项目
<div align="center">

ZH | EN

<h1>DISC-FinLLM</h1>

Generic badge license

Demo | 技术报告

</div>

DISC-FinLLM 是一个专门针对金融场景下为用户提供专业、智能、全面的金融咨询服务的金融领域大模型,由复旦大学数据智能与社会计算实验室 (Fudan-DISC) 开发并开源。

我们将在该项目中开源如下资源:

您可以通过访问这个链接来在线体验我们的 DISC-FinLLM。

目录

概述

Image

<p></p>

DISC-FinLLM是一个金融领域的大语言模型,是由面向不同金融场景的4个模组:金融咨询、金融文本分析、金融计算、金融知识检索问答构成的多专家智慧金融系统。这些模组分别在金融NLP任务、人类试题、资料分析和时事分析等四个评测中展现出明显优势,证明了DISC-FinLLM能为广泛的金融领域提供强有力的支持。DISC-FinLLM能在不同应用场景下提供帮助,可用于实现不同的功能:

  • 金融咨询: 该模组可以在中国金融语境下,与用户展开关于金融话题的多轮对话,或是为用户解释金融专业的相关知识,是由数据集中的金融咨询指令部分训练而来。
  • 金融文本分析: 该模组可以帮助用户在金融文本上完成的信息抽取、情感分析、文本分类、文本生成等NLP任务,是由数据集中的金融任务指令部分训练而来。
  • 金融计算: 该模组可以帮助用户完成与数学计算相关的任务,除了利率、增长率等基本计算,它还支持统计分析和包括Black-Scholes期权定价模型、EDF预期违约概率模型在内的金融模型计算。这一模组是由数据集中的金融计算指令部分训练而来。
  • 金融知识检索问答: 该模组可以基于金融新闻、研报和相关政策文件为用户提供投资建议、时事分析、政策解读。它是由数据集中的检索增强指令部分训练而来。

模型效果演示

金融咨询

consult_demo

金融文本分析

document_demo

金融计算

tool_demo

金融知识检索问答

exam_ref_demo

DISC-Fin-SFT 数据集

DISC-FinLLM是基于我们构建的高质量金融数据集DISC-Fin-SFT在通用领域中文大模型Baichuan-13B-Chat上进行LoRA指令微调得到的金融大模型。DISC-Fin-SFT总共包含约25万条数据,分为四个子数据集,它们分别是金融咨询指令、金融任务指令、金融计算指令、检索增强指令。

Image

数据集数据量输入长度输出长度
金融咨询指令63k26369
金融任务指令110k67635
金融计算指令57k73190
检索增强指令20k1031521
DISC-Fin-SFT246k351198

金融咨询指令

金融咨询指令数据来源于三部分:

  • Wealth-alpaca-lora 是一个英文的金融问答数据集,且其部分答案不符合中国国情和立场。因此我们将FiQA中的所有问题翻译成中文,并使用ChatGPT重新生成问题的答案,来提高这一数据集的质量。
  • 金融名词解释。我们在网上收集了200多个金融领域的专业术语(如:杠杆收购),然后使用令ChatGPT为这些专业词汇生成相应的问答对,用以训练模型对金融术语的理解。
  • 经管之家论坛上的公开发帖。我们利用self-chat prompting方法引导ChatGPT围绕帖子主题生成多轮的问答。

在引导ChatGPT生成数据的过程中,我们通过精心设计的prompt确保生成的问答符合中国的国情、立场、态度和语言风格。

金融任务指令

金融任务指令数据来源于两个部分:

  • 金融NLP数据集。该部分是基于已有的金融NLP数据集,通过人工编写的prompt改编而来的。我们搜集了十余个开源的NLP中文数据集,可以分为情绪分析、信息抽取、文本生成、文本分类和翻译等几类。此数据集的分布如下所示:
数据集主要任务类型次要任务类型数据量
FPB情感分析情感分析18690
FIQA-SA情感分析情感分析-
FNSC情感分析情感分析-
CCKS-NEC-2022信息抽取因果抽取7499
SmoothNLP IEE信息抽取事件抽取3256
SmoothNLP NHG文本生成文本生成4642
CCKS2022-event文本分类事件类型分类3578
Minds14文本分类意图识别59143
Financial Report信息抽取实体抽取61705
OpenKG信息抽取实体抽取7672
OpenKG信息抽取实体抽取67921
FDDC2018翻译术语翻译333
Wealth-alpaca-lora文本生成关键词生成41825
<!-- | Dataset | Major Task Type | Minor Task Type | \# Samples | |--------------------|------------------------|---------------------------|-----------:| | FPB | Sentiment Analysis | Sentiment Analysis | 18690 | | FIQA-SA | Sentiment Analysis | Sentiment Analysis | - | | FNSC | Sentiment Analysis | Sentiment Analysis | - | | CCKS-NEC-2022 | Imformation Extraction | Causality Extraction | 7499 | | SmoothNLP IEE | Imformation Extraction | Event Extraction | 3256 | | SmoothNLP NHG | Text Generation | Text Generation | 4642 | | CCKS2022-event | Text Classification | Event Type Classification | 3578 | | Minds14 | Text Classification | Intent Prediction | 59143 | | Financial Report | Imformation Extraction | Entity Extraction | 61705 | | OpenKG | Imformation Extraction | Entity Extraction | 7672 | | OpenKG | Imformation Extraction | Entity Extraction | 67921 | | FDDC2018 | Translation | Terminology Translation | 333 | | Wealth-alpaca-lora | Question Answering | Question Answering | 41825 | -->
  • 金融无标签文本数据集。我们基于无标注的金融文本构建金融阅读理解数据集。我们从东方财富网收集了87k篇文章,包括金融新闻和行业研报摘要。然后,引导ChatGPT先生成问题,再生成答案,得到(金融文本、问题、答案)这样的三元组,并进一步使用阅读理解任务模板改写为指令对,

金融计算指令

在金融计算中,表达式计算器、方程求解器、正态概率表、计数器四种工具可以帮助模型完成大多数的计算任务。四种工具各有不同的调用命令、输入和输出。例如,计算器的命令是 [Calculator(expression)→result]。在这一部分,构建金融计算指令的目的就是训练模型在合适的时候调用这些工具解决数学问题。四个工具的定义如下表所示:

工具名称工具描述
表达式计算器输入:初等函数的数学表达式
输出:表达式的计算结果(小数表示)
方程求解器输入:方程组
输出:方程组的解
计数器输入:包含数据样本的数组
输出:样本数量
概率表输入:数字
输出:正态分布累积分布函数在这个数字处的值

首先构建了一个种子任务库,其中的种子任务由三部分组成:根据金融考试人工改写的计算题、带有研报上下文的数据计算题、BELLE数据集中校园数学部分的通用数学题。特别地,根据Toolformer的方法,这些问题的答案中插入着上述四个工具的调用命令,它们代表着调用工具的方法和时机。随后,为了增加数据的数量和多样性,我们通过小样本思维链提示(Few-shot Chain-of-Thought Prompting)方法,让ChatGPT在提示词的引导下,根据种子任务生成超过5万个新问答对,其中的答案也带有插件命令。

检索增强指令

检索增强指令的构造分为三步。第一步,我们根据新闻和研报等金融文本构造金融分析问题。第二步,我们在知识库中检索与问题有关的文档,其中参考文档源于我们构建金融知识库,包含18k研报和69k金融新闻。第三步,我们将问题和参考资料结合在一起,生成问题的答案。在这个过程中,问题和答案是由ChatGPT通过Chain-of-Retrieval (CoR) prompting方法生成的。最终我们构建了一个由20k条检索增强指令组成的数据集,其中的指令涵盖了金融领域中主要的分析形式,包括行业分析、政策分析、投资建议、公司战略规划等。

我们展示了DISC-FinLLM-SFT 训练数据样例,您可以访问这个链接下载数据集。

模型微调

LoRA微调

针对金融领域的不同功能,我们首先采用了多专家微调的训练策略。我们在特定的子数据集上训练模型的各个模组,使它们彼此互不干扰,独立完成不同任务。为此,我们以Baichuan-13B-Chat为基座模型,使用LoRA方法高效地进行参数微调。

Image

通过数据集的四个部分,分别训练4个LoRA专家模组。部署时,用户只需更换在当前基座上的LoRA参数就可以切换功能。因此用户能够根据使用需求激活/停用模型的不同模组,而无需重新加载整个模型。4个LoRA专家模组分别如下:

  • 金融顾问:该模型用于多轮对话。由于我们的金融咨询指令数据十分丰富,该模型可以在中国的金融语境下做出高质量的回答,为用户解答金融领域的专业问题,提供优质的咨询服务。
  • 文件分析师:该模型主要用于处理金融自然语言处理领域内的各种任务,包括但不限于金融文本中的信息抽取、情绪分析等。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多