波斯语情感分析优化:ParsBERT v2.0项目
该项目专注于ParsBERT v2.0在波斯语情感分析中的表现,通过更新词汇表和微调训练数据集,如Digikala、SnappFood和DeepSentiPers,实现文本情感的多类别及二元分类测试,其中去除了中性类别。ParsBERT v2在测试中展现出优秀的性能,为研究人员提供了有效的工具。用户可访问相关链接下载数据集,并通过文档获取更详细的使用说明和项目动态。
bert-fa-base-uncased-sentiment-deepsentipers-binary
是一个基于变压器(Transformer)的模型,专门用于理解波斯语情感。此模型的基础是 ParsBERT,它是一个针对波斯语言的预训练模型。为增强 ParsBERT 的功能,我们通过重新构建词汇库并在新的波斯语语料库上进行微调,使 ParsBERT 能够适用于更多领域。
该项目的主要目标是对文本进行情感分类,例如对评论进行分析,以判断其情感倾向。为了实现这一目标,该项目测试了知名的三个数据集:Digikala
用户评论、SnappFood
用户评论和 DeepSentiPers
数据集。其中 DeepSentiPers
数据集采用二元和多元的分类形式。
DeepSentiPers
是一个平衡且扩充的版本,共包含 12,138 个有关数字产品的用户评价,这些评价被标记为五种不同的类别:两个正面类(开心、满意),两个负面类(狂怒、生气)和一个中性类。因此,这个数据集既可以用于多类分类,也可以用于二元分类。在进行二元分类时,中性类别及其相关语句会从数据集中移除。
类别 | 数量 |
---|---|
狂怒 | 236 |
生气 | 1357 |
中性 | 2874 |
开心 | 2848 |
满意 | 2516 |
可以从以下链接下载 SentiPers 和 DeepSentiPers 数据集:
下表总结了 ParsBERT 在不同模型和架构下获得的 F1 分数:
数据集 | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers |
---|---|---|---|---|
SentiPers (多类分类) | 71.31* | 71.11 | - | 69.33 |
SentiPers (二元分类) | 92.42* | 92.13 | - | 91.98 |
项目提供了一个使用指南,可以通过 Colab 笔记本 进行情感分析实验。
如果在出版物中引用该项目,请使用如下 BibTeX 条目:
@article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} }
如果您有任何问题,可以在 ParsBERT Issues 中提出。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具 备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏 览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都 能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号