本仓库是Mask DINO: 面向统一的基于Transformer的目标检测和分割框架(DINO发音为`daɪnoʊ',如恐龙)的官方实现。我们的代码基于detectron2。detrex版本同步开源。
:fire: 我们发布了一个强大的开放集目标检测和分割模型OpenSeeD,它基于MaskDINO,在开放集目标分割任务上取得了最佳结果。代码和检查点可在此处获取。
<details open> <summary> <font size=8><strong>新闻</strong></font> </summary>[2023/7] 我们发布了Semantic-SAM,这是一个通用图像分割模型,可以以任何所需的粒度对任何内容进行分割和识别。代码和检查点已可用!
[2023/2] Mask DINO已被CVPR 2023接收!
[2022/9] 我们发布了一个工具箱detrex,提供最先进的基于Transformer的检测算法。它包括性能更好的DINO,Mask DINO也将以detrex实现发布。欢迎使用!</br>
[2022/3]我们建立了一个仓库Awesome Detection Transformer,展示了关于用于检测和分割的transformer的论文。欢迎关注!
</details>[2022/12/02] 我们的代码和检查点已可用!在相同设置下,Mask DINO在COCO上进一步实现了ResNet-50和SwinL分别达到<strong>51.7</strong>和<strong>59.0</strong>的边界框AP,优于DINO!
[2022/6] 我们提出了一个统一的检测和分割模型Mask DINO,在三个分割任务上都取得了最佳结果(COCO实例分割排行榜上54.7 AP,COCO全景分割排行榜上59.5 PQ,ADE20K语义分割排行榜上60.8 mIoU)!
发布代码和检查点
发布从DINO到MaskDINO的模型转换检查点器
发布基于submitit的GPU集群提交脚本,用于多节点训练
发布大型模型的EMA训练
发布更多大型模型
参见安装说明。
参见结果。
参见入门指南。
参见更多用法。
在这部分中,我们展示了不使用额外检测数据或技巧的干净模型。
我们遵循DINO,默认在编码器的前馈网络中使用隐藏维度2048
。我们还在实例分割和检测中使用了论文中提出的增强掩码框初始化。为了更好地展示我们的模型,我们还在此表中列出了使用隐藏维度1024
(hid 1024
)和不使用增强掩码初始化(no mask enhance
)的模型。
我们使用隐藏维度1024
和100个查询进行语义分割。
您还可以在这里找到所有这些模型。
所有模型都是使用4个NVIDIA A100 GPU(基于ResNet-50的模型)或8个NVIDIA A100 GPU(基于Swin-L的模型)进行训练的。
我们将在未来发布更多预训练模型。
在上面的表格中,"名称"列包含指向配置文件的链接config_path
,相应的模型检查点可以从model
中的链接下载。
如果您的数据集文件不在此仓库下,您需要先添加export DETECTRON2_DATASETS=/path/to/your/data
或使用符号链接ln -s
将数据集链接到此仓库中,然后再执行以下命令。
例如,要复现我们的实例分割结果,您可以从表格中复制配置路径,将预训练检查点下载到python train_net.py --eval-only --num-gpus 8 --config-file config_path MODEL.WEIGHTS /path/to/checkpoint_file
/path/to/checkpoint_file
,然后运行
这将复现模型的结果。python train_net.py --eval-only --num-gpus 8 --config-file configs/coco/instance-segmentation/maskdino_R50_bs16_50ep_3s_dowsample1_2048.yaml MODEL.WEIGHTS /path/to/checkpoint_file
eval-only
将训练模型。对于Swin骨干网络,您需要使用MODEL.WEIGHTS /path/to/pretrained_checkpoint
指定预训练骨干网络的路径
python train_net.py --num-gpus 8 --config-file config_path MODEL.WEIGHTS /path/to/checkpoint_file
15G
内存,50个训练轮需要3
天时间。60G
内存。如果您的GPU内存不足,您也可以在两个节点上使用16个GPU进行分布式训练。python train_net.py --num-gpus 1 --config-file config_path SOLVER.IMS_PER_BATCH SET_TO_SOME_REASONABLE_VALUE SOLVER.BASE_LR SET_TO_SOME_REASONABLE_VALUE
您也可以参考Detectron2入门指南获取完整用法。
我们提供两种方法将预测的掩码转换为框来初始化解码器框。您可以按如下设置:
MODEL.MaskDINO.INITIALIZE_BOX_TYPE: no
不使用掩码增强的框初始化MODEL.MaskDINO.INITIALIZE_BOX_TYPE: mask2box
一种快速转换方式MODEL.MaskDINO.INITIALIZE_BOX_TYPE: bitmask
由detectron2提供的转换方法,速度较慢但转换更准确这两种转换方式对最终性能影响不大,您可以选择任意一种。
此外,如果您已经在没有掩码增强框初始化的情况下训练了一个模型50个epoch,您可以插入这种方法,并简单地在最后几个epoch中微调模型(即从训练32K迭代的模型加载并进行微调)。这种方式也可以达到与从头开始训练相似的性能,但更加灵活。
MaskDINO由三个组件组成:主干网络、像素解码器和Transformer解码器。 您可以轻松地用自己的实现替换这三个组件中的任何一个。
主干网络:在maskdino/modeling/backbone
下定义并注册您的主干网络 。您可以参考Swin Transformer作为示例。
像素解码器:像素解码器实际上是DINO和Deformable DETR中的多尺度编码器,我们遵循mask2former称之为像素解码器。它位于maskdino/modeling/pixel_decoder
中,您可以更改您的多尺度编码器。返回的值包括:
mask_features
是分辨率为原始图像1/4的每像素嵌入,通过融合主干网络1/4特征和多尺度编码器编码的1/8特征获得。这用于生成二元掩码。multi_scale_features
,是Transformer解码器的多尺度输入。
对于具有4个尺度的ResNet-50模型,我们使用1/32、1/16和1/8分辨率,但您可以在这里使用任意分辨率,并按照DINO的做法将1/32进一步下采样以获得第4个尺度的1/64分辨率。对于使用SwinL的5尺度模型,我们额外使用1/4分辨率特征,就像DINO中那样。transformer解码器:它主要遵循DINO解码器进行检测和分割任务。它定义在maskdino/modeling/transformer_decoder
中。
Mask DINO以Apache 2.0许可证发布。请查看LICENSE文件以获取更多信息。
版权所有 (c) IDEA。保留所有权利。
根据Apache许可证2.0版("许可证")授权;除非遵守许可证,否则不得使用这些文件。您可以在http://www.apache.org/licenses/LICENSE-2.0 获取许可证副本。
除非适用法律要求或书面同意,根据许可证分发的软件是基于"按原样"分发的,不附带任何明示或暗示的担保或条件。请参阅许可证以了解特定语言下的权限和限制。
如果您发现我们的工作对您的研究有帮助,请考虑引用以下BibTeX条目。
@misc{li2022mask, title={Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation}, author={Feng Li and Hao Zhang and Huaizhe xu and Shilong Liu and Lei Zhang and Lionel M. Ni and Heung-Yeung Shum}, year={2022}, eprint={2206.02777}, archivePrefix={arXiv}, primaryClass={cs.CV} }
如果您发现代码有用,也请考虑以下BibTeX条目。
@misc{zhang2022dino, title={DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection}, author={Hao Zhang and Feng Li and Shilong Liu and Lei Zhang and Hang Su and Jun Zhu and Lionel M. Ni and Heung-Yeung Shum}, year={2022}, eprint={2203.03605}, archivePrefix={arXiv}, primaryClass={cs.CV} } @inproceedings{li2022dn, title={Dn-detr: Accelerate detr training by introducing query denoising}, author={Li, Feng and Zhang, Hao and Liu, Shilong and Guo, Jian and Ni, Lionel M and Zhang, Lei}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={13619--13627}, year={2022} } @inproceedings{ liu2022dabdetr, title={{DAB}-{DETR}: Dynamic Anchor Boxes are Better Queries for {DETR}}, author={Shilong Liu and Feng Li and Hao Zhang and Xiao Yang and Xianbiao Qi and Hang Su and Jun Zhu and Lei Zhang}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=oMI9PjOb9Jl} }
非常感谢这些优秀的开源项目
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可 视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快 速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电 商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号