Retrieval-Augmented-Visual-Question-Answering

Retrieval-Augmented-Visual-Question-Answering

细粒度后期交互多模态检索视觉问答系统

这个项目开发了一个基于细粒度后期交互多模态检索的视觉问答系统。系统在OK-VQA等多个基准数据集上实现了先进的检索和问答性能。它采用模块化架构,包含预训练映射网络、FLMR检索器和BLIP2读取器等关键组件。项目提供完整的代码库,支持训练和评估,并发布了预训练模型和处理后的数据集,便于研究人员进行后续研究。

FLMR视觉问答多模态检索预训练模型基准测试Github开源项目

Retrieval-augmented Visual Question Answering with Fine-grained Late-interaction Multi-modal Retrieval

PWC PWC PWC PWC

This is the official repository of the Retrieval Augmented Visual Question Answering (RAVQA) project. The project covers RAVQA and RAVQA-v2 (equipped with Fine-grained Late-interaction Multi-modal Retrieval).

🔥🔥News

  • [10/08/2024] We received many requests regarding adding multilingual abilities to PreFLMR. We announce that we are now training the Chinese version of PreFLMR and will release it very soon. Stay tuned!
  • [05/06/2024] 🔥🔥🔥The PreFLMR paper has been accepted to appear at ACL 2024! The camera-ready version of the paper has been updated here to include more details and analyses. Along with the acceptance, we have made some important updates to help you use the model and extend your research easier:
    • Added an evaluation script that reproduces the results in the PreFLMR paper here
    • Added the updated benchmark results with the transformer implementation here
    • Added an example script to fine-tune PreFLMR on a custom retrieval dataset here
    • IMPORTANT: fixed the OVEN data splits in the M2KR benchmark, and updated each entry with a fixed instruction to ensure the evaluation result is not affected by random sampling of instructions. Please delete your local cache and download the dataset again.
  • [13/04/2024] 🔥 We highlight another valuable and concurrent research on training instruction-following, universal, multi-task multi-modal retrievers: UniIR: Training and Benchmarking Universal Multimodal Information Retrievers, which was done by the researchers of the University of Waterloo. They also shared the M-Beir benchmark which can be used to train and evaluate multi-modal universal information retrievers. In the near future, we may collaborate to combine the two benchmarks together to facilitate the advance of this field.
  • [06/03/2024] 🔥🔥🔥The implementation based on huggingface-transformers is now available here!
  • [20/02/2024] 🔥🔥🔥 The PreFLMR project page has been launched! Explore a captivating demo showcasing PreFLMR_ViT-G, our largest model yet. Additionally, access pre-trained checkpoints and the M2KR benchmark, designed for assessing general-purpose knowledge retrievers. Stay tuned as we will soon upload a huggingface-compatible implementation along with example scripts for indexing and retrieval, providing effortless access via FLMRModelForRetrieval.from_pretrained(...).
  • [14/02/2024] 🔥Our follow-up work, PreFLMR, is now available here! PreFLMR is a general-purpose retriever that was pre-trained on more than ten million multi-modal retrieval data and achieved strong performance across a wide range of knowledge-intensive tasks. It can also serve as a strong foundation retrieval model that can be fine-tuned to fit any downstream retrieval tasks. We will release the model through huggingface-transformers very soon, which allows quick deployment in minutes.
  • [31/01/2024] 🔥We are happy to announce that the training and testing code for FLMR is now released! For the legacy RAVQA-v1 and the code for FVQA, please checkout to legacy_v1 or tag v1.0. We are also preparing a new FLMR implementation for Huggingface transformers, which will be released as plug-in-and-play models.🔥
  • [03/10/2023] Our follow-up work "Fine-grained Late-interaction Multi-modal Retrieval for Retrieval Augmented Visual Question Answering" has been accepted to appear at NeurIPS 2023! The paper can be found here here. If you prefer a 3-minute technical summary, look at this post. The code will be released in this repository soon. We are happy to announce that we have made a major change to our code framework such that experiment management and data processing are more flexible.
  • [01/05/2023] FVQA 2.0 is released here.
  • [08/02/2023] Our work for creating adversarial samples for the FVQA dataset is accepted to appear at EACL 2023. The dataset and codes will be released here soon.
  • [01/01/2023] We released an initial version of our work. The framework supports:
    • RA-VQA-NoDPR (T5 baseline)
    • RA-VQA-FrDPR (DPR retriever + T5 reader)
    • RA-VQA (joint training of DPR + T5)
    • TRiG (Our replication of TRiG)
    • Datasets: OK-VQA and F-VQA
  • [19/12/2022] We plan to release the code within Dec, 2022. The author is currently overwhelmed by internship work. Thanks for waiting!
  • [12/12/2022] We plan to release the code of our reproduced TRiG system as well.

Table of Content

Benchmarks

Benchmark Results for PreFLMR in the dedicated FLMR codebase

ModelWIT Recall@10IGLUE Recall@1KVQA Recall@5MSMARCO Recall@5OVEN Recall@5LLaVA Recall@1EVQA Recall@5EVQA Pseudo Recall@5OKVQA Recall@5OKVQA Pseudo Recall@5Infoseek Recall@5Infoseek Pseudo Recall@5
LinWeizheDragon/PreFLMR_ViT-G🤗0.6190.7180.4190.7830.6430.7260.6250.7210.3020.6740.3920.577
LinWeizheDragon/PreFLMR_ViT-L🤗0.6050.6990.4400.7790.6080.7290.6090.7080.3140.6900.3740.578
LinWeizheDragon/PreFLMR_ViT-B🤗0.4270.5740.2940.7860.4680.6730.5500.6630.2720.6580.2600.496

Note: We converted the checkpoints from PyTorch to Huggingface-transformers, whose benchmark results differ from the numbers reported in the original paper slightly. You can reproduce the results in the above paper by referring to the instructions in this document.

Benchmark Results for FLMR in this codebase

Using the provided codebase, it is expected to obtain the following results.

ModelRecall@5Notes
FLMR (9 ROIs)89.20
FLMR (9 ROIs)89.28Using the pretrained ckpt
ModelVQA ScoreNotes
RA-VQA54.51In the previous paper
RA-VQA-v261.86with FLMR

Since we refactored the codebase significantly in clean-up, these numbers may not match exactly to what were reported in the paper.

Resources

We host the data required for running this system in Huggingface and Baidu Cloud (coming soon).

The data contains:

  • Packed pre-extracted data for OK-VQA (including OCR features, VinVL object detection features, Oscar captioning features)
  • FLMR with the mapping network pretrained on WIT (batch size 30, in-batch negative sampling, 1 GPU, grad accumulation 4)
  • FLMR pretrained on OK-VQA and Google Search dataset (batch size 30, in-batch negative sampling, 1 GPU, grad accumulation 4)

You can download these resources from Huggingface altogether: Combined Download on Huggingface.

wget https://huggingface.co/datasets/BByrneLab/RAVQAV2Data/resolve/main/RAVQA_v2_data.tar.gz?download=true

After downloading and extracting the tar.gz, you need to unzip all .zip files under okvqa folder and okvqa/pre-extracted/OCR.zip.

After otaining all these resources, you should:

  • Change the data paths in configs/okvqa/okvqa_data_config.libsonnet
  • Change the paths to TokenizerModelVersion in configs/okvqa/FLMR_with_ROI.jsonnet
  • Change the paths to EncoderModelVersion and TokenizerModelVersion in configs/okvqa/FLMR_base_preload_vision_features.jsonnet

By downloading the provided OK-VQA data, you must comply with the OK-VQA license and MS COCO license.

Detailed Instructions

Overview

The framework was designed and implemented by Weizhe Lin, University of Cambridge. All rights are reserved. Use with research purposes is allowed. This framework is designed for research purpose, with flexibility for extension. It is not a perfect framework for production, of course.

The training and testing are backboned by pytorch-lightning. The pre-trained Transformer models are from Huggingface-transformers. The training platform is Pytorch.

In this release, we designed a new framework that wraps the data processing/training/testing utilities - Runway For ML. It is a highly efficient framework that enables flexible experimentation and data processing. Data processing is formulated as a Directional Acyclic Graph, on which the framework traverses through nodes to prepare data. This framework enables efficient data processing at million scale. For more details, please refer to the README of the framework. When cloning this repository, please use the kbvqa_dev branch.

The indexing and searching of FLMR is supported by FAISS and ColBERT. The ColBERT engine is plugged into this project as a third-party package. We fixed many errors in this package following LI-RAGE.

Structure

The framework consists of:

  1. main.py: the main program. It loads a config file and override some entries with command-line arguments. It initialises a RunwayExperiment instance to execute training and testing.
  2. Data Ops: it loads the data according to configs specified in data_pipeline. The details of this feature can be found in here
  3. Datasets: they are automatically loaded by the data loader wrapper. .collate_fn is defined to collate the data. An decorator class ModuleParser is used to help generate the training inputs. This decorator class generates input dict according to configs (config.model_config.input_modules/decorder_input_modules/output_modules).
  4. **Model

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多