Transformer_Tracking

Transformer_Tracking

视觉追踪中Transformer应用的全面综述和前沿动态

本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。

Transformer视觉跟踪目标检测计算机视觉深度学习Github开源项目

Transformer Tracking

This repository is a paper digest of Transformer-related approaches in visual tracking tasks. Currently, tasks in this repository include Unified Tracking (UT), Single Object Tracking (SOT) and 3D Single Object Tracking (3DSOT). Note that some trackers involving a Non-Local attention mechanism are also collected. Papers are listed in alphabetical order of the first character.

:link:Jump to:

[!NOTE] I find it hard to trace all tasks that are related to tracking, including Video Object Segmentation (VOS), Multiple Object Tracking (MOT), Video Instance Segmentation (VIS), Video Object Detection (VOD) and Object Re-Identification (ReID). Hence, I discard all other tracking tasks in a previous update. If you are interested, you can find plenty of collections in this archived version. Besides, the most recent trend shows that different tracking tasks are coming to the same avenue.

:star2:Recommendation

It's the End of the Game

State-of-the-Art Transformer Tracker:two_hearts::two_hearts::two_hearts:

  • GRM (Generalized Relation Modeling for Transformer Tracking) [paper] [code] [video]
  • AiATrack (AiATrack: Attention in Attention for Transformer Visual Tracking) [paper] [code] [video]

Up-to-Date Benchmark Results:rocket::rocket::rocket:

Helpful Learning Resource for Tracking:thumbsup::thumbsup::thumbsup:

  • (Survey) Transformers in Single Object Tracking: An Experimental Survey [paper], Visual Object Tracking with Discriminative Filters and Siamese Networks: A Survey and Outlook [paper]
  • (Talk) Discriminative Appearance-Based Tracking and Segmentation [video], Deep Visual Reasoning with Optimization-Based Network Modules [video]
  • (Library) PyTracking: Visual Tracking Library Based on PyTorch [code]
  • (People) Martin Danelljan@ETH [web], Bin Yan@DLUT [web]

Recent Trends:fire::fire::fire:

  • Target Head: Autoregressive Temporal Modeling

    • Representative

  • Feature Backbone: Joint Feature Extraction and Interaction

    • Advantage

      • Benefit from pre-trained vision Transformer models.
      • Free from randomly initialized correlation modules.
      • More discriminative target-specific feature extraction.
      • Much faster inference and training convergence speed.
      • Simple and generic one-branch tracking framework.
    • Roadmap

      • 1st step :feet: feature interaction inside the backbone.
      • 2nd step :feet: concatenation-based feature interaction.
      • 3rd step :feet: joint feature extraction and interaction.
      • 4th step :feet: generalized and robust relation modeling.

:bookmark:Unified Tracking (UT)

CVPR 2024

  • GLEE (General Object Foundation Model for Images and Videos at Scale) [paper] [code]
  • OmniViD (OmniVid: A Generative Framework for Universal Video Understanding) [paper] [code]

CVPR 2023

  • OmniTracker (OmniTracker: Unifying Object Tracking by Tracking-with-Detection) [paper] [code]
  • UNINEXT (Universal Instance Perception as Object Discovery and Retrieval) [paper] [code]

ICCV 2023

  • MITS (Integrating Boxes and Masks: A Multi-Object Framework for Unified Visual Tracking and Segmentation) [paper] [code]

Preprint 2023

  • HQTrack (Tracking Anything in High Quality) [paper] [code]
  • SAM-Track (Segment and Track Anything) [paper] [code]
  • TAM (Track Anything: Segment Anything Meets Videos) [paper] [code]

CVPR 2022

  • UTT (Unified Transformer Tracker for Object Tracking) [paper] [code]

ECCV 2022

  • Unicorn (Towards Grand Unification of Object Tracking) [paper] [code]

:bookmark:Single Object Tracking (SOT)

CVPR 2024

  • AQATrack (Autoregressive Queries for Adaptive Tracking with Spatio-Temporal Transformers) [paper] [code]
  • ARTrackV2 (ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe) [paper] [code]
  • DiffusionTrack (DiffusionTrack: Point Set Diffusion Model for Visual Object Tracking) [paper] [code]
  • HDETrack (Event Stream-Based Visual Object Tracking: A High-Resolution Benchmark Dataset and A Novel Baseline) [paper] [code]
  • HIPTrack (HIPTrack: Visual Tracking with Historical Prompts) [paper] [code]
  • OneTracker (OneTracker: Unifying Visual Object Tracking with Foundation Models and Efficient Tuning) [paper] [code]
  • QueryNLT (Context-Aware Integration of Language and Visual References for Natural Language Tracking) [paper] [code]
  • SDSTrack (SDSTrack: Self-Distillation Symmetric Adapter Learning for Multi-Modal Visual Object Tracking) [paper] [code]
  • Un-Track (Single-Model and Any-Modality for Video Object Tracking) [paper] [code]

ECCV 2024

  • Diff-Tracker (Diff-Tracker: Text-to-Image Diffusion Models are Unsupervised Trackers) [paper] [code]
  • LoRAT (Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance) [paper] [code]

AAAI 2024

  • BAT (Bi-Directional Adapter for Multi-Modal Tracking) [paper] [code]
  • EVPTrack (Explicit Visual Prompts for Visual Object Tracking) [paper] [code]
  • ODTrack (ODTrack: Online Dense Temporal Token Learning for Visual Tracking) [paper] [code]
  • STCFormer (Sequential Fusion Based Multi-Granularity Consistency for Space-Time Transformer Tracking) [paper] [code]
  • TATrack (Temporal Adaptive RGBT Tracking with Modality Prompt) [paper] [code]
  • UVLTrack (Unifying Visual and Vision-Language Tracking via Contrastive Learning) [paper] [code]

ICML 2024

  • AVTrack (Learning Adaptive and View-Invariant Vision Transformer for Real-Time UAV Tracking) [paper] [code]

IJCAI 2024

  • USTrack (Unified Single-Stage Transformer Network for Efficient RGB-T Tracking) [paper] [code]

WACV 2024

  • SMAT (Separable Self and Mixed Attention Transformers for Efficient Object Tracking) [paper] [code]
  • TaMOs (Beyond SOT: It's Time to Track Multiple Generic Objects at Once) [paper] [code]

ICRA 2024

  • DCPT (DCPT: Darkness Clue-Prompted Tracking in Nighttime UAVs) [paper] [code]

Preprint 2024

  • ABTrack (Adaptively Bypassing Vision Transformer Blocks for Efficient Visual Tracking) [paper] [code]
  • ACTrack (ACTrack: Adding Spatio-Temporal Condition for Visual Object Tracking) [paper] [code]
  • AFter (AFter: Attention-Based Fusion Router for RGBT Tracking) [paper] [code]
  • AMTTrack (Long-Term Frame-Event Visual Tracking: Benchmark Dataset and Baseline) [paper] [code]
  • BofN (Predicting the Best of N Visual Trackers) [paper] [code]
  • CAFormer (Cross-modulated Attention Transformer for RGBT Tracking) [paper] [code]
  • CRSOT (CRSOT: Cross-Resolution Object Tracking using Unaligned Frame and Event Cameras) [paper] [code]
  • CSTNet (Transformer-Based RGB-T Tracking with Channel and Spatial Feature Fusion) [paper] [code]
  • DyTrack (Exploring Dynamic Transformer for Efficient Object Tracking) [paper] [code]
  • eMoE-Tracker (eMoE-Tracker: Environmental MoE-Based Transformer for Robust Event-Guided Object Tracking) [paper] [code]
  • LoReTrack (LoReTrack: Efficient and Accurate Low-Resolution Transformer Tracking) [paper] [code]
  • MAPNet (Multi-Attention Associate Prediction Network for Visual Tracking) [paper] [code]
  • MDETrack (Enhanced Object Tracking by Self-Supervised Auxiliary Depth Estimation Learning) [paper] [code]
  • MMMP (From Two Stream to One Stream: Efficient RGB-T Tracking via Mutual Prompt Learning and Knowledge Distillation) [paper] [code]
  • M3PT (Middle Fusion and Multi-Stage, Multi-Form Prompts for Robust RGB-T Tracking) [paper] [code]
  • NLMTrack (Enhancing Thermal Infrared Tracking with Natural Language Modeling and Coordinate Sequence Generation) [paper] [code]
  • OIFTrack (Optimized Information Flow for Transformer

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多