Transformer_Tracking

Transformer_Tracking

视觉追踪中Transformer应用的全面综述和前沿动态

本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。

Transformer视觉跟踪目标检测计算机视觉深度学习Github开源项目

Transformer Tracking

This repository is a paper digest of Transformer-related approaches in visual tracking tasks. Currently, tasks in this repository include Unified Tracking (UT), Single Object Tracking (SOT) and 3D Single Object Tracking (3DSOT). Note that some trackers involving a Non-Local attention mechanism are also collected. Papers are listed in alphabetical order of the first character.

:link:Jump to:

[!NOTE] I find it hard to trace all tasks that are related to tracking, including Video Object Segmentation (VOS), Multiple Object Tracking (MOT), Video Instance Segmentation (VIS), Video Object Detection (VOD) and Object Re-Identification (ReID). Hence, I discard all other tracking tasks in a previous update. If you are interested, you can find plenty of collections in this archived version. Besides, the most recent trend shows that different tracking tasks are coming to the same avenue.

:star2:Recommendation

It's the End of the Game

State-of-the-Art Transformer Tracker:two_hearts::two_hearts::two_hearts:

  • GRM (Generalized Relation Modeling for Transformer Tracking) [paper] [code] [video]
  • AiATrack (AiATrack: Attention in Attention for Transformer Visual Tracking) [paper] [code] [video]

Up-to-Date Benchmark Results:rocket::rocket::rocket:

Helpful Learning Resource for Tracking:thumbsup::thumbsup::thumbsup:

  • (Survey) Transformers in Single Object Tracking: An Experimental Survey [paper], Visual Object Tracking with Discriminative Filters and Siamese Networks: A Survey and Outlook [paper]
  • (Talk) Discriminative Appearance-Based Tracking and Segmentation [video], Deep Visual Reasoning with Optimization-Based Network Modules [video]
  • (Library) PyTracking: Visual Tracking Library Based on PyTorch [code]
  • (People) Martin Danelljan@ETH [web], Bin Yan@DLUT [web]

Recent Trends:fire::fire::fire:

  • Target Head: Autoregressive Temporal Modeling

    • Representative

  • Feature Backbone: Joint Feature Extraction and Interaction

    • Advantage

      • Benefit from pre-trained vision Transformer models.
      • Free from randomly initialized correlation modules.
      • More discriminative target-specific feature extraction.
      • Much faster inference and training convergence speed.
      • Simple and generic one-branch tracking framework.
    • Roadmap

      • 1st step :feet: feature interaction inside the backbone.
      • 2nd step :feet: concatenation-based feature interaction.
      • 3rd step :feet: joint feature extraction and interaction.
      • 4th step :feet: generalized and robust relation modeling.

:bookmark:Unified Tracking (UT)

CVPR 2024

  • GLEE (General Object Foundation Model for Images and Videos at Scale) [paper] [code]
  • OmniViD (OmniVid: A Generative Framework for Universal Video Understanding) [paper] [code]

CVPR 2023

  • OmniTracker (OmniTracker: Unifying Object Tracking by Tracking-with-Detection) [paper] [code]
  • UNINEXT (Universal Instance Perception as Object Discovery and Retrieval) [paper] [code]

ICCV 2023

  • MITS (Integrating Boxes and Masks: A Multi-Object Framework for Unified Visual Tracking and Segmentation) [paper] [code]

Preprint 2023

  • HQTrack (Tracking Anything in High Quality) [paper] [code]
  • SAM-Track (Segment and Track Anything) [paper] [code]
  • TAM (Track Anything: Segment Anything Meets Videos) [paper] [code]

CVPR 2022

  • UTT (Unified Transformer Tracker for Object Tracking) [paper] [code]

ECCV 2022

  • Unicorn (Towards Grand Unification of Object Tracking) [paper] [code]

:bookmark:Single Object Tracking (SOT)

CVPR 2024

  • AQATrack (Autoregressive Queries for Adaptive Tracking with Spatio-Temporal Transformers) [paper] [code]
  • ARTrackV2 (ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe) [paper] [code]
  • DiffusionTrack (DiffusionTrack: Point Set Diffusion Model for Visual Object Tracking) [paper] [code]
  • HDETrack (Event Stream-Based Visual Object Tracking: A High-Resolution Benchmark Dataset and A Novel Baseline) [paper] [code]
  • HIPTrack (HIPTrack: Visual Tracking with Historical Prompts) [paper] [code]
  • OneTracker (OneTracker: Unifying Visual Object Tracking with Foundation Models and Efficient Tuning) [paper] [code]
  • QueryNLT (Context-Aware Integration of Language and Visual References for Natural Language Tracking) [paper] [code]
  • SDSTrack (SDSTrack: Self-Distillation Symmetric Adapter Learning for Multi-Modal Visual Object Tracking) [paper] [code]
  • Un-Track (Single-Model and Any-Modality for Video Object Tracking) [paper] [code]

ECCV 2024

  • Diff-Tracker (Diff-Tracker: Text-to-Image Diffusion Models are Unsupervised Trackers) [paper] [code]
  • LoRAT (Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance) [paper] [code]

AAAI 2024

  • BAT (Bi-Directional Adapter for Multi-Modal Tracking) [paper] [code]
  • EVPTrack (Explicit Visual Prompts for Visual Object Tracking) [paper] [code]
  • ODTrack (ODTrack: Online Dense Temporal Token Learning for Visual Tracking) [paper] [code]
  • STCFormer (Sequential Fusion Based Multi-Granularity Consistency for Space-Time Transformer Tracking) [paper] [code]
  • TATrack (Temporal Adaptive RGBT Tracking with Modality Prompt) [paper] [code]
  • UVLTrack (Unifying Visual and Vision-Language Tracking via Contrastive Learning) [paper] [code]

ICML 2024

  • AVTrack (Learning Adaptive and View-Invariant Vision Transformer for Real-Time UAV Tracking) [paper] [code]

IJCAI 2024

  • USTrack (Unified Single-Stage Transformer Network for Efficient RGB-T Tracking) [paper] [code]

WACV 2024

  • SMAT (Separable Self and Mixed Attention Transformers for Efficient Object Tracking) [paper] [code]
  • TaMOs (Beyond SOT: It's Time to Track Multiple Generic Objects at Once) [paper] [code]

ICRA 2024

  • DCPT (DCPT: Darkness Clue-Prompted Tracking in Nighttime UAVs) [paper] [code]

Preprint 2024

  • ABTrack (Adaptively Bypassing Vision Transformer Blocks for Efficient Visual Tracking) [paper] [code]
  • ACTrack (ACTrack: Adding Spatio-Temporal Condition for Visual Object Tracking) [paper] [code]
  • AFter (AFter: Attention-Based Fusion Router for RGBT Tracking) [paper] [code]
  • AMTTrack (Long-Term Frame-Event Visual Tracking: Benchmark Dataset and Baseline) [paper] [code]
  • BofN (Predicting the Best of N Visual Trackers) [paper] [code]
  • CAFormer (Cross-modulated Attention Transformer for RGBT Tracking) [paper] [code]
  • CRSOT (CRSOT: Cross-Resolution Object Tracking using Unaligned Frame and Event Cameras) [paper] [code]
  • CSTNet (Transformer-Based RGB-T Tracking with Channel and Spatial Feature Fusion) [paper] [code]
  • DyTrack (Exploring Dynamic Transformer for Efficient Object Tracking) [paper] [code]
  • eMoE-Tracker (eMoE-Tracker: Environmental MoE-Based Transformer for Robust Event-Guided Object Tracking) [paper] [code]
  • LoReTrack (LoReTrack: Efficient and Accurate Low-Resolution Transformer Tracking) [paper] [code]
  • MAPNet (Multi-Attention Associate Prediction Network for Visual Tracking) [paper] [code]
  • MDETrack (Enhanced Object Tracking by Self-Supervised Auxiliary Depth Estimation Learning) [paper] [code]
  • MMMP (From Two Stream to One Stream: Efficient RGB-T Tracking via Mutual Prompt Learning and Knowledge Distillation) [paper] [code]
  • M3PT (Middle Fusion and Multi-Stage, Multi-Form Prompts for Robust RGB-T Tracking) [paper] [code]
  • NLMTrack (Enhancing Thermal Infrared Tracking with Natural Language Modeling and Coordinate Sequence Generation) [paper] [code]
  • OIFTrack (Optimized Information Flow for Transformer

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多