Project Icon

Megatron-LM

优化GPU训练技术 加速大规模Transformer模型

Megatron-LM框架利用GPU优化技术实现Transformer模型的大规模训练。其Megatron-Core组件提供模块化API和系统优化,支持自定义模型训练。该项目可进行BERT、GPT、T5等模型预训练,支持数千GPU分布式训练百亿参数级模型,并提供数据预处理、模型评估和下游任务功能。

Megatron-LM & Megatron-Core

GPU optimized techniques for training transformer models at-scale

Documentation version license

Latest News

  • [2024/7] Megatron-Core v0.7 improves scalability and training resiliency and adds support for multimodal training (blog).
  • [2024/6] Megatron-Core added supports for Mamba-based models. Check out our paper An Empirical Study of Mamba-based Language Models and code example.
  • [2024/1 Announcement] NVIDIA has released the core capabilities in Megatron-LM into Megatron-Core in this repository. Megatron-Core expands upon Megatron-LM's GPU-optimized techniques with more cutting-edge innovations on system-level optimizations, featuring composable and modular APIs. Explore the Megatron-Core intro for more details.

Table of Contents

Megatron Overview

This repository comprises two essential components: Megatron-LM and Megatron-Core. Megatron-LM serves as a ressearch-oriented framework leveraging Megatron-Core for large language model (LLM) training. Megatron-Core, on the other hand, is a library of GPU optimized training techniques that comes with formal product support including versioned APIs and regular releases. You can use Megatron-Core alongside Megatron-LM or Nvidia NeMo Framework for an end-to-end and cloud-native solution. Alternatively, you can integrate Megatron-Core's building blocks into your preferred training framework.

Megatron-LM

First introduced in 2019, Megatron (1, 2, and 3) sparked a wave of innovation in the AI community, enabling researchers and developers to utilize the underpinnings of this library to further LLM advancements. Today, many of the most popular LLM developer frameworks have been inspired by and built directly leveraging the open-source Megatron-LM library, spurring a wave of foundation models and AI startups. Some of the most popular LLM frameworks built on top of Megatron-LM include Colossal-AI, HuggingFace Accelerate, and NVIDIA NeMo Framework. A list of projects that have directly used Megatron can be found here.

Megatron-Core

Megatron-Core is an open-source PyTorch-based library that contains GPU-optimized techniques and cutting-edge system-level optimizations. It abstracts them into composable and modular APIs, allowing full flexibility for developers and model researchers to train custom transformers at-scale on NVIDIA accelerated computing infrastructure. This library is compatible with all NVIDIA Tensor Core GPUs, including FP8 acceleration support for NVIDIA Hopper architectures.

Megatron-Core offers core building blocks such as attention mechanisms, transformer blocks and layers, normalization layers, and embedding techniques. Additional functionality like activation recomputation, distributed checkpointing is also natively built-in to the library. The building blocks and functionality are all GPU optimized, and can be built with advanced parallelization strategies for optimal training speed and stability on NVIDIA Accelerated Computing Infrastructure. Another key component of the Megatron-Core library includes advanced model parallelism techniques (tensor, sequence, pipeline, context, and MoE expert parallelism).

Megatron-Core can be used with NVIDIA NeMo, an enterprise-grade AI platform. Alternatively, you can explore Megatron-Core with the native PyTorch training loop here. Visit Megatron-Core documentation to learn more.

Training Speed and Scalability

Our codebase is capable of efficiently training large language models (i.e., models with hundreds of billions of parameters) with both model and data parallelism. To demonstrate how our software scales with multiple GPUs and model sizes, we consider GPT models ranging from 2 billion parameters to 462 billion parameters. All models use a vocabulary size of 131,072 and a sequence length of 4096. We vary hidden size, number of attention heads, and number of layers to arrive at a specific model size. As the model size increases, we also modestly increase batch size. Our experiments use up to 6144 H100 GPUs. We perform fine-grained overlapping of data-parallel (--overlap-grad-reduce --overlap-param-gather), tensor-parallel (--tp-comm-overlap) and pipeline-parallel communication (enabled by default) with computation to improve scalability. The reported throughputs are measured for end-to-end training and include all operations including data loading, optimizer steps, communication, and even logging. Note that we did not train these models to convergence.

Model table

Our weak scaled results show superlinear scaling (MFU increases from 41% for the smallest model considered to 47-48% for the largest models); this is because larger GEMMs have higher arithmetic intensity and are consequently more efficient to execute.

Weak scaling

We also strong scaled the standard GPT-3 model (our version has slightly more than 175 billion parameters due to larger vocabulary size) from 96 H100 GPUs to 4608 GPUs, using the same batch size of 1152 sequences throughout. Communication becomes more exposed at larger scale, leading to a reduction in MFU from 47% to 42%.

Strong scaling

Setup

We strongly recommend using the latest release of NGC's PyTorch container with DGX nodes. If you can't use this for some reason, use the latest pytorch, cuda, nccl, and NVIDIA APEX releases. Data preprocessing requires NLTK, though this is not required for training, evaluation, or downstream tasks.

You can launch an instance of the PyTorch container and mount Megatron, your dataset, and checkpoints with the following Docker commands:

docker pull nvcr.io/nvidia/pytorch:xx.xx-py3
docker run --gpus all -it --rm -v /path/to/megatron:/workspace/megatron -v /path/to/dataset:/workspace/dataset -v /path/to/checkpoints:/workspace/checkpoints nvcr.io/nvidia/pytorch:xx.xx-py3

Downloading Checkpoints

We have provided pretrained BERT-345M and GPT-345M checkpoints to evaluate or for finetuning downstream tasks. To access these checkpoints, first sign up for and setup the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the NGC documentation.

Alternatively, you can directly download the checkpoints using:

BERT-345M-uncased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0.1_uncased.zip
BERT-345M-cased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0.1_cased.zip
GPT-345M: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip

The models require vocabulary files to run. The BERT WordPiece vocab file can be extracted from Google's pretrained BERT models: uncased, cased. The GPT vocab file and merge table can be downloaded directly.

Usage

After installation, there are several possible workflows. The most comprehensive is:

  1. Data preprocessing
  2. Pretraining
  3. Finetuning (Optional for zero-shot tasks)
  4. Downstream task evaluation or text generation

However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.

We've provided several scripts for pretraining both BERT and GPT in the examples directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT interactive text generation.

Training

Data Preprocessing

The training data requires preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:

{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}

The name of the text field of the json can be changed by using the --json-key flag in preprocess_data.py The other metadata are optional and are not used in training.

The loose json is then processed into a binary format for training. To convert the json into mmap format use preprocess_data.py. An example script to prepare data for BERT training is:

python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-bert \
       --vocab-file bert-vocab.txt \
       --tokenizer-type BertWordPieceLowerCase \
       --split-sentences

The output will be two files named, in this case, my-bert_text_sentence.bin and my-bert_text_sentence.idx. The --data-path specified in later BERT training is the full path and new filename, but without the file extension.

For T5 use the same preprocessing as BERT, perhaps renaming it to:

       --output-prefix my-t5 \

Some minor modifications are required for GPT data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:

python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-gpt2 \
       --vocab-file gpt2-vocab.json \
       --tokenizer-type GPT2BPETokenizer \
       --merge-file gpt2-merges.txt \
       --append-eod

Here the output files are named my-gpt2_text_document.bin and my-gpt2_text_document.idx. As before, in GPT training, use the longer name without the extension as --data-path.

Further command line arguments are described in the source file preprocess_data.py.

BERT Pretraining

The examples/pretrain_bert.sh script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at --lr to a minimum set by --min-lr over --lr-decay-iters iterations. The fraction of training iterations used for warmup is set by --lr-warmup-fraction. While this is single GPU training, the batch size specified by --micro-batch-size is a single forward-backward path batch-size and the code will perform gradient accumulation steps until it reaches global-batch-size which is the batch size per iteration. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with --seed). We use train-iters as the training iterations requested. Alternatively, one can provide --train-samples which is total number of samples to train on. If this option is present, then instead of providing --lr-decay-iters, one will need to provide --lr-decay-samples.

The logging, checkpoint-saving, and evaluation interval options are specified. Note that the --data-path now includes the additional _text_sentence suffix added in preprocessing, but does not include the file extensions.

Further command line arguments are described in the source file arguments.py.

To run examples/pretrain_bert.sh, make any desired modifications including setting the environment variables for CHECKPOINT_PATH, VOCAB_FILE, and DATA_PATH. Make sure to set these variables to their paths in the container. Then launch the container with Megatron and necessary paths mounted (as explained in Setup) and run the example script.

GPT Pretraining

The examples/pretrain_gpt.sh script runs single GPU 345M parameter GPT pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training.

It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a json vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the --lr-decay-style has been set to cosine decay. Note that the --data-path now includes the additional _text_document suffix added in preprocessing, but does not include the file extensions.

Further command line arguments are described in the source file arguments.py.

examples/pretrain_gpt.sh can be launched the same way as described for BERT. Set the env vars and make any other modifications, launch the container with appropriate mounts, and run the script.

T5 Pretraining

Very similar to

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号