This repository comprises two essential components: Megatron-LM and Megatron-Core. Megatron-LM serves as a ressearch-oriented framework leveraging Megatron-Core for large language model (LLM) training. Megatron-Core, on the other hand, is a library of GPU optimized training techniques that comes with formal product support including versioned APIs and regular releases. You can use Megatron-Core alongside Megatron-LM or Nvidia NeMo Framework for an end-to-end and cloud-native solution. Alternatively, you can integrate Megatron-Core's building blocks into your preferred training framework.
First introduced in 2019, Megatron (1, 2, and 3) sparked a wave of innovation in the AI community, enabling researchers and developers to utilize the underpinnings of this library to further LLM advancements. Today, many of the most popular LLM developer frameworks have been inspired by and built directly leveraging the open-source Megatron-LM library, spurring a wave of foundation models and AI startups. Some of the most popular LLM frameworks built on top of Megatron-LM include Colossal-AI, HuggingFace Accelerate, and NVIDIA NeMo Framework. A list of projects that have directly used Megatron can be found here.
Megatron-Core is an open-source PyTorch-based library that contains GPU-optimized techniques and cutting-edge system-level optimizations. It abstracts them into composable and modular APIs, allowing full flexibility for developers and model researchers to train custom transformers at-scale on NVIDIA accelerated computing infrastructure. This library is compatible with all NVIDIA Tensor Core GPUs, including FP8 acceleration support for NVIDIA Hopper architectures.
Megatron-Core offers core building blocks such as attention mechanisms, transformer blocks and layers, normalization layers, and embedding techniques. Additional functionality like activation recomputation, distributed checkpointing is also natively built-in to the library. The building blocks and functionality are all GPU optimized, and can be built with advanced parallelization strategies for optimal training speed and stability on NVIDIA Accelerated Computing Infrastructure. Another key component of the Megatron-Core library includes advanced model parallelism techniques (tensor, sequence, pipeline, context, and MoE expert parallelism).
Megatron-Core can be used with NVIDIA NeMo, an enterprise-grade AI platform. Alternatively, you can explore Megatron-Core with the native PyTorch training loop here. Visit Megatron-Core documentation to learn more.
Our codebase is capable of efficiently training large language models (i.e., models with hundreds of billions of parameters) with both model and data parallelism. To demonstrate how our software scales with multiple GPUs and model sizes, we consider GPT models ranging from 2 billion parameters to 462 billion parameters. All models use a vocabulary size of 131,072 and a sequence length of 4096. We vary hidden size, number of attention heads, and number of layers to arrive at a specific model size. As the model size increases, we also modestly increase batch size. Our experiments use up to 6144 H100 GPUs. We perform fine-grained overlapping of data-parallel (--overlap-grad-reduce --overlap-param-gather
), tensor-parallel (--tp-comm-overlap
) and pipeline-parallel communication (enabled by default) with computation to improve scalability. The reported throughputs are measured for end-to-end training and include all operations including data loading, optimizer steps, communication, and even logging. Note that we did not train these models to convergence.
Our weak scaled results show superlinear scaling (MFU increases from 41% for the smallest model considered to 47-48% for the largest models); this is because larger GEMMs have higher arithmetic intensity and are consequently more efficient to execute.
We also strong scaled the standard GPT-3 model (our version has slightly more than 175 billion parameters due to larger vocabulary size) from 96 H100 GPUs to 4608 GPUs, using the same batch size of 1152 sequences throughout. Communication becomes more exposed at larger scale, leading to a reduction in MFU from 47% to 42%.
We strongly recommend using the latest release of NGC's PyTorch container with DGX nodes. If you can't use this for some reason, use the latest pytorch, cuda, nccl, and NVIDIA APEX releases. Data preprocessing requires NLTK, though this is not required for training, evaluation, or downstream tasks.
You can launch an instance of the PyTorch container and mount Megatron, your dataset, and checkpoints with the following Docker commands:
docker pull nvcr.io/nvidia/pytorch:xx.xx-py3
docker run --gpus all -it --rm -v /path/to/megatron:/workspace/megatron -v /path/to/dataset:/workspace/dataset -v /path/to/checkpoints:/workspace/checkpoints nvcr.io/nvidia/pytorch:xx.xx-py3
We have provided pretrained BERT-345M and GPT-345M checkpoints to evaluate or for finetuning downstream tasks. To access these checkpoints, first sign up for and setup the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the NGC documentation.
Alternatively, you can directly download the checkpoints using:
<pre> BERT-345M-uncased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0.1_uncased.zip BERT-345M-cased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0.1_cased.zip GPT-345M: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip </pre>The models require vocabulary files to run. The BERT WordPiece vocab file can be extracted from Google's pretrained BERT models: uncased, cased. The GPT vocab file and merge table can be downloaded directly.
After installation, there are several possible workflows. The most comprehensive is:
However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.
We've provided several scripts for pretraining both BERT and GPT in the examples
directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT interactive text generation.
The training data requires preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
<pre> {"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"} {"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"} </pre>The name of the text
field of the json can be changed by using the --json-key
flag in preprocess_data.py
The other metadata are optional and are not used in training.
The loose json is then processed into a binary format for training. To convert the json into mmap format use preprocess_data.py
. An example script to prepare data for BERT training is:
The output will be two files named, in this case, my-bert_text_sentence.bin
and my-bert_text_sentence.idx
. The --data-path
specified in later BERT training is the full path and new filename, but without the file extension.
For T5 use the same preprocessing as BERT, perhaps renaming it to:
<pre> --output-prefix my-t5 \ </pre>Some minor modifications are required for GPT data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:
<pre> python tools/preprocess_data.py \ --input my-corpus.json \ --output-prefix my-gpt2 \ --vocab-file gpt2-vocab.json \ --tokenizer-type GPT2BPETokenizer \ --merge-file gpt2-merges.txt \ --append-eod </pre>Here the output files are named my-gpt2_text_document.bin
and my-gpt2_text_document.idx
. As before, in GPT training, use the longer name without the extension as --data-path
.
Further command line arguments are described in the source file preprocess_data.py
.
The examples/pretrain_bert.sh
script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at --lr
to a minimum set by --min-lr
over --lr-decay-iters
iterations. The fraction of training iterations used for warmup is set by --lr-warmup-fraction
. While this is single GPU training, the batch size specified by --micro-batch-size
is a single forward-backward path batch-size and the code will perform gradient accumulation steps until it reaches global-batch-size
which is the batch size per iteration. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with --seed
). We use train-iters
as the training iterations requested. Alternatively, one can provide --train-samples
which is total number of samples to train on. If this option is present, then instead of providing --lr-decay-iters
, one will need to provide --lr-decay-samples
.
The logging, checkpoint-saving, and evaluation interval options are specified. Note that the --data-path
now includes the additional _text_sentence
suffix added in preprocessing, but does not include the file extensions.
Further command line arguments are described in the source file arguments.py
.
To run examples/pretrain_bert.sh
, make any desired modifications including setting the environment variables for CHECKPOINT_PATH
, VOCAB_FILE
, and DATA_PATH
. Make sure to set these variables to their paths in the container. Then launch the container with Megatron and necessary paths mounted (as explained in Setup) and run the example script.
The examples/pretrain_gpt.sh
script runs single GPU 345M parameter GPT pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training.
It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a json
vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the --lr-decay-style
has been set to cosine decay. Note that the --data-path
now includes the additional _text_document
suffix added in preprocessing, but does not include the file extensions.
Further command line arguments are described in the source file arguments.py
.
examples/pretrain_gpt.sh
can be launched the same way as described for BERT. Set the env vars and make any other modifications, launch the container with appropriate mounts, and run the script.
Very similar to
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用 于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号