notram

notram

挪威自然语言处理的突破性进展

挪威国家图书馆主导开发的NoTraM项目为挪威语和北欧语言构建了基于transformer的先进语言模型。项目发布了规模可媲美英语数据集的挪威语语料库,涵盖报纸、书籍和政府文件等多种来源。此外,项目提供预训练模型、微调模型和语料库处理工具,为挪威语自然语言处理研究奠定了坚实基础。

Norwegian Transformer Model语言模型自然语言处理预训练模型语料库Github开源项目

挪威Transformer模型

挪威国家图书馆拥有"NoTraM - 挪威Transformer模型"项目。

项目目标

  • 基于现代Transformer架构(BERT、Roberta、T5等)为挪威语和北欧语言构建Transformer模型
  • 构建并发布用于无监督语言训练的最先进挪威语语料库,并向自然语言处理社区开放

挪威超大型语料库

挪威超大型语料库是一个开放的文本语料库,在规模和质量上可与现有的英语数据集相媲美。

该语料库的核心基于2006年启动的一个独特项目。在数字化项目中,目标一直是将所有曾经用挪威语出版的内容进行数字化并存储。此外,我们还添加了多个其他挪威语文本的公共来源。有关来源以及如何构建的详细信息,可在挪威超大型语料库说明中找到。

[语料库表格内容略]

访问语料库最简单的方法是从HuggingFace下载。该网站详细解释了如何使用语料库。它还提供了有关语料库内容的广泛信息,以及如何过滤语料库的某些部分,以及如何将其与其他挪威语数据集(如MC4和OSCAR)结合使用。

除了语料库本身,我们还提供了一组用于创建和清理语料库文件的脚本。我们还提供了一个指南,您可以按照我们的步骤为您的数据源创建语料库,以及如何创建和上传HuggingFace数据集的说明。其他工具和指南也可以在我们的指南页面上找到。我们已经将所有软件开放供任何人使用。大部分是用Python 3编写的。

预训练模型

以下预训练模型可用。这些模型需要在特定任务上进行微调。如果您有可用的数据集,微调是很简单的。请查看下面的Colab示例代码。通常只需更改几行代码即可适应您的任务。

[预训练模型表格内容略]

微调模型

这些模型已经在特定任务上进行了微调,可以直接使用。

[微调模型表格内容略]

结果

NB-BERT-Base模型在下面引用的文章中进行了全面测试。以下是我们的一些结果:

[结果表格内容略]

  • 测试数据集的F1分数。两个模型都以3e-5的学习率微调了4个epoch。

Colab 笔记本

原始模型需要针对目标任务进行微调。典型的任务是分类,建议您为这个特定任务训练一个顶层全连接层。以下笔记本将允许您测试模型,并在我们的模型基础上训练您自己的专门模型。特别是关于分类模型的笔记本,它训练了一个情感分类任务,可以很容易地适应于训练任何自然语言处理分类任务。

任务Colaboratory 笔记本
如何使用模型进行掩码层预测(简单)<a href="https://colab.research.google.com/gist/peregilk/f3054305cfcbefb40f72ea405b031438/nbailab-masked-layer-pipeline-example.ipynb" target="_blank"><img src="https://yellow-cdn.veclightyear.com/ab5030c0/9fe5831a-afb0-44a8-98d4-c17712c292e0.svg" alt="在 Colab 中打开"/></a>
如何使用微调的 MNLI 版本进行零样本分类(简单)<a href="https://colab.research.google.com/gist/peregilk/769b5150a2f807219ab8f15dd11ea449/nbailab-mnli-norwegian-demo.ipynb" target="_blank"><img src="https://yellow-cdn.veclightyear.com/ab5030c0/9fe5831a-afb0-44a8-98d4-c17712c292e0.svg" alt="在 Colab 中打开"/></a>
如何微调分类模型(进阶)<a href="https://colab.research.google.com/gist/peregilk/3c5e838f365ab76523ba82ac595e2fcc/nbailab-finetuning-and-evaluating-a-bert-model-for-classification.ipynb" target="_blank"><img src="https://yellow-cdn.veclightyear.com/ab5030c0/9fe5831a-afb0-44a8-98d4-c17712c292e0.svg" alt="在 Colab 中打开"/></a>
如何微调 NER/POS 模型(进阶)<a href="https://colab.research.google.com/gist/peregilk/6f5efea432e88199f5d68a150cef237f/-nbailab-finetuning-and-evaluating-a-bert-model-for-ner-and-pos.ipynb" target="_blank"><img src="https://yellow-cdn.veclightyear.com/ab5030c0/9fe5831a-afb0-44a8-98d4-c17712c292e0.svg" alt="在 Colab 中打开"/></a>

免责声明

本仓库发布的模型旨在用于通用目的,并可供第三方使用。这些模型可能存在偏见和/或其他不良影响。 当第三方使用这些模型(或基于这些模型的系统)部署或向其他方提供系统和/或服务,或成为这些模型的用户时,他们应注意,缓解使用带来的风险是他们的责任,并且在任何情况下都应遵守适用的法规,包括有关人工智能使用的法规。 在任何情况下,模型所有者(挪威国家图书馆)均不对第三方使用这些模型所产生的任何结果负责。

引用

如果您使用我们的模型或语料库,请引用我们的文章:

@inproceedings{kummervold-etal-2021-operationalizing,
title = {Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model},
author = {Kummervold, Per E  and
  De la Rosa, Javier  and
  Wetjen, Freddy  and
  Brygfjeld, Svein Arne},
booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
year = {2021},
address = {Reykjavik, Iceland (Online)},
publisher = {Link{\"o}ping University Electronic Press, Sweden},
url = {https://aclanthology.org/2021.nodalida-main.3},
pages = {20--29},
abstract = {In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokm{\aa}l and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.},
}

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多