提升图像到LaTeX代码转化的AI模型
Nougat-LaTeX-based模型通过优化输入分辨率和自适应填充技术,提高了图像到LaTeX代码生成的准确性。该模型微调自facebook/nougat-base,应用于im2latex-100k数据集,解决了原始编码器对方程图像处理不适配的问题。在Wikipedia、arXiv和im2latex-100k数据集的评测中,Nougat-LaTeX-based的token_acc值为0.623850,超越了其他同类模型。适合用于高精度LaTeX代码生成,提供了一种更高效的研究工具。需安装transformers库,建议在本地环境运行以避免API响应被截断。
Nougat-Latex-Base是一个基于Donut模型的图像到文本转换工具,它专注于从图像生成LaTeX代码。该项目从facebook的nougat-base模型精调而来,并利用了im2latex-100k数据集以提高其转换LaTeX代码的能力。针对初始编码器输入图像尺寸不适合用于公式图像这一问题,Nougat-Latex-Base对输入分辨率进行了调整,并采用自适应填充的方法,确保在任意环境中的公式图像片段,其缩放后的分辨率能与训练数据尽量匹配,从而避免因重新缩放而导致的质量下降。
Nougat-Latex-Base的性能在由Wikipedia、arXiv以及im2latex-100k收集的图像-方程配对数据集中进行评估,这些数据是由lukas-blecher整理的。对比结果如下表所示:
模型 | 语义词准确率(token_acc) ↑ | 标准编辑距离(normed edit distance) ↓ |
---|---|---|
pix2tex | 0.5346 | 0.10312 |
pix2tex* | 0.60 | 0.10 |
nougat-latex-based | 0.623850 | 0.06180 |
其中,pix2tex是一个由ResNet、ViT和文本解码器组成的架构,初次出现在LaTeX-OCR项目中。
pix2tex*为LaTeX-OCR项目中报告的数据;pix2tex为作者根据发布的检查点自己评估的结果;nougat-latex-based采用beam-search策略生成结果进行评估。
在项目中运行Nougat-Latex-Base模型需要安装以下环境:
pip install transformers >= 4.34.0
由于部分API接口可能会导致响应结果被截断,建议用户在本地运行模型以获得完整的转译结果。使用步骤如下:
git clone git@github.com:NormXU/nougat-latex-ocr.git cd ./nougat-latex-ocr
import torch from PIL import Image from transformers import VisionEncoderDecoderModel from transformers.models.nougat import NougatTokenizerFast from nougat_latex import NougatLaTexProcessor model_name = "Norm/nougat-latex-base" device = "cuda" if torch.cuda.is_available() else "cpu" # 初始化模型 model = VisionEncoderDecoderModel.from_pretrained(model_name).to(device) # 初始化处理器 tokenizer = NougatTokenizerFast.from_pretrained(model_name) latex_processor = NougatLaTexProcessor.from_pretrained(model_name) # 测试 image = Image.open("path/to/latex/image.png") if not image.mode == "RGB": image = image.convert('RGB') pixel_values = latex_processor(image, return_tensors="pt").pixel_values decoder_input_ids = tokenizer(tokenizer.bos_token, add_special_tokens=False, return_tensors="pt").input_ids with torch.no_grad(): outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_length, early_stopping=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, use_cache=True, num_beams=5, bad_words_ids=[[tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = tokenizer.batch_decode(outputs.sequences)[0] sequence = sequence.replace(tokenizer.eos_token, "").replace(tokenizer.pad_token, "").replace(tokenizer.bos_token, "") print(sequence)
这段代码示例展示了如何从一张LaTeX图像生成LaTeX代码,用户可以根据需要修改图像路径并观察输出结果。该项目能够为有LaTeX需求的用户提供强大且高效的图像转码解决方案。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创 新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号