Project Icon

InternVL2-2B-AWQ

跨多语言多图像任务的高效视觉语言模型

InternVL2-2B-AWQ以AWQ算法实现4bit权重量化,模型推理速度较FP16提升至2.4倍。lmdeploy兼容众多NVIDIA GPU进行W4A16推理,提升离线批量推理效率。同时,该项目提供RESTful API服务并兼容OpenAI接口,快速部署和应用于视觉-语言任务。此多语言兼容的模型不仅提高推理效率,还具备灵活的服务特性。

InternVL2-2B-AWQ项目介绍

项目背景

InternVL2-2B-AWQ是一个提供图片到文字转换的多模态模型项目。它基于OpenGVLab的InternVL2-2B基础模型,利用了先进的量化技术来提升模型的推理速度。该项目不仅支持图像和视频的识别和描述,还能通过自定义代码实现更复杂的视觉和语言结合任务。

技术细节

InternVL2-2B-AWQ项目采用了一种称为AWQ的量化算法,这是INT4的权重量化方法。通过高性能的CUDA内核支持,4bit量化模型的推理速度比传统FP16计算快了2.4倍。这对于需要快速处理大规模数据的应用场景来说,极具吸引力。

支持的GPU型号

该项目支持以下NVIDIA的GPU型号进行W4A16推理:

  • Turing (sm75): 20系列, T4
  • Ampere (sm80, sm86): 30系列, A10, A16, A30, A100
  • Ada Lovelace (sm90): 40系列

在进行量化和推理之前,需要确保已经安装lmdeploy软件包。

pip install lmdeploy==0.5.3

推理功能

InternVL2-2B-AWQ提供支持批量离线推理的功能,可以通过以下示例代码进行尝试:

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2-2B-AWQ'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
backend_config = TurbomindEngineConfig(model_format='awq')
pipe = pipeline(model, backend_config=backend_config, log_level='INFO')
response = pipe(('describe this image', image))
print(response.text)

有关更多管道参数的信息,请参阅官方的文档

服务部署

使用LMDeploy的api_server,可以通过一行命令轻松将模型打包成服务。它提供的RESTful API与OpenAI的接口兼容。以下是服务启动的示例:

lmdeploy serve api_server OpenGVLab/InternVL2-2B-AWQ --backend turbomind --server-port 23333 --model-format awq

为了使用OpenAI样式的接口,需要安装OpenAI库:

pip install openai

然后,通过以下代码进行API调用:

from openai import OpenAI

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=[{
        'role':
        'user',
        'content': [{
            'type': 'text',
            'text': 'describe this image',
        }, {
            'type': 'image_url',
            'image_url': {
                'url':
                'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
            },
        }],
    }],
    temperature=0.8,
    top_p=0.8)
print(response)

许可和引用

该项目根据MIT许可协议开放,而InternLM2则根据Apache-2.0许可协议开放。如果您在研究中发现该项目有用,请考虑引用相关论文:

@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}

总之,InternVL2-2B-AWQ项目在视觉基础模型的扩展和通用视觉语言任务的对齐上做出了显著进展,为研究和商业应用提供了强有力的支持。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号