轻量级适配方法高效微调大语言模型
LLaMA-Adapter是一种高效的大语言模型微调方法。通过在LLaMA模型中插入适配器,仅引入120万个可学习参数,1小时内即可将LLaMA转化为指令跟随模型。该方法提出零初始化注意力机制,稳定早期训练。LLaMA-Adapter支持多模态输入,拓展应用场景。与全量微调相比,在参数量和训练时间上具显著优势,同时保持相当性能。
'LLaMA-Adapter:使用零初始化注意力进行语言模型的高效微调'和'LLaMA-Adapter V2:参数高效的视觉指令模型'的官方实现。
<p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/6fa8bcaf-6fe0-427d-95e4-60ab335e4492.png"/ width="100%"> <br> </p>本仓库提出了LLaMA-Adapter (V2),一种用于微调指令跟随和多模态LLaMA模型的轻量级适配方法🔥。
试用LLaMA-Adapter的网页演示🤗:, LLaMA-Adapter V2 和 ImageBind-LLM。
加入我们的微信群!
名称 | 方法 | 数据 | 模态 | 视觉 | 文本 |
---|---|---|---|---|---|
LLaMA-Adapter V1 | 前缀,门控 | Alpaca | 文本 | × | LLaMA-7B |
LLaMA-Adapter V2 对话 | 缩放,偏置,归一化 | ShareGPT | 文本 | × | LLaMA-65B |
LLaMA-Adapter V2 多模态 | [预训练] 前缀,投影,门控 <br />[微调] 偏置,归一化 | [预训练] Image-Text-V1<br />[微调] GPT4LLM, LLaVA | 图像&文本 | CLIP-ViT-L/14 | LLaMA-7B |
LLaMA-Adapter V2.1 多模态 | [预训练] 前缀,投影,门控 <br />[微调] 偏置,归一化,LoRA | [预训练] Image-Text-V1<br />[微调] GPT4LLM, LLaVA, VQAv2 | 图像&文本 | CLIP-ViT-L/14 | LLaMA-7B |
ImageBind-LLM | [预训练] 前缀,投影,门控<br />[微调] 偏置,归一化,LoRA | [预训练] Image-Text-V1<br />[微调] 指令跟随 | ImageBind模态 + 点云 | imagebind_huge | Open-Chinese-LLaMA-7B |
ImageBind-对话 | [预训练] 前缀,投影,门控<br />[微调] 偏置,归一化,LoRA | [预训练] Image-Text-V1<br />[微调] LLaVA, ShareGPT | ImageBind模态 + 点云 | imagebind_huge | Open-Chinese-LLaMA-7B |
效率比较:
模型 | 参数量 | 存储空间 | 训练时间 |
---|---|---|---|
Alpaca | 7B | 13G | 3小时 |
LLaMA-Adapter | 1.2M | 4.7M | 1小时 |
通过在LLaMA的transformer中插入adapters,我们的方法只引入了1.2M可学习参数,并在1小时内将LLaMA转变为一个指令跟随模型。为了稳定早期阶段的训练,我们提出了一种新颖的零初始化注意力,通过零门控机制自适应地融入指令信号。微调后,LLaMA-Adapter可以生成高质量的指令跟随句子,与全量微调的Stanford Alpaca和Alpaca-Lora相当。
<div align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/9bc76bd0-9286-41de-8849-cbc47b62372d.png"/ width="90%"> </div>我们的方法可以简单地扩展到多模态输入指令。以下是图像条件LLaMA-Adapter在ScienceQA上的推理框架,这也适用于其他模态,如音频和视频。
<div align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/c79b1c97-3378-4e94-9820-ebfdaae53a45.png"/ width="90%"> </div>这里是LLaMA-Adapter V1的从头开始的脚本。
conda create -n llama_adapter -y python=3.8 conda activate llama_adapter # 安装pytorch conda install pytorch cudatoolkit -c pytorch -y # 安装依赖和llama-adapter pip install -r requirements.txt pip install -e .
注意:如需设置其他模型,请参考llama_adapter_v2_chat65b、llama_adapter_v2_multimodal7b和imagebind_LLM了解更多详情。
请通过此表单(官方)申请访问预训练的LLaMA,或从Hugging Face(非官方)下载LLaMA-7B。然后,从这里获取我们的LLaMA-Adapter权重。我们将下载的LLaMA权重路径和适配器路径分别表示为TARGET_FOLDER
和ADAPTER_PATH
。
以下是使用7B LLaMA模型和我们的LLaMA-Adapter生成指令遵循句子的示例:
torchrun --nproc_per_node 1 example.py \ --ckpt_dir $TARGET_FOLDER/model_size\ --tokenizer_path $TARGET_FOLDER/tokenizer.model \ --adapter_path $ADAPTER_PATH
我们在这里发布了LLaMA-7B模型上LLaMA-Adapter的简单微调代码,以便轻松复现,依赖项最少。我们很快将发布LLaMA-65B和多模态LLaMA-Adapter的微调代码。
请从Standford Alpaca下载52K指令遵循训练数据,并将其放在DATA_PATH
下。然后运行:
cd alpaca_finetuning_v1 torchrun --nproc_per_node 8 finetuning.py \ --model Llama7B_adapter \ --llama_model_path $TARGET_FOLDER/ \ --data_path $DATA_PATH/alpaca_data.json \ --adapter_layer 30 \ --adapter_len 10 \ --max_seq_len 512 \ --batch_size 4 \ --epochs 5 \ --warmup_epochs 2 \ --blr 9e-3 \ --weight_decay 0.02 \ --output_dir ./checkpoint/
如何提高我的批判性思维技能?给我三个建议。
广泛阅读:阅读书籍、文章和其他信息来源可以帮助你提高批判性思维技能。通过接触不同的观点和想法,你可以学会更有效地分析和评估信息。
练习正念:正念是指专注当下并关注自己的思想和感受的练习。通过更多地意识到你的思想和情感,你可以更好地理解和评估它们。这可以帮助你形成更客观和理性的思考方式。
参与开放式讨论:加入讨论小组或辩论俱乐部,在那里你可以与他人进行开放式讨论。这可以通过挑战你的假设并鼓励你考虑不同的观点来帮助你提高批判性思维技能。
作为一个超级英雄,你会如何向一个好奇的孩子解释你的起源故事?
作为一个超级英雄,我有一个非常有趣和激动人心的起源故事要和你分享。从前,有一个名叫约翰的小男孩住在一个小镇上。约翰一直很好奇,想要帮助他人,所以他每天都在探索周围的世界,了解不同的文化和人们。有一天,当他外出探险时,偶然发现了一个神秘的洞穴。在洞穴里,约翰发现了一个奇怪的装置,它能赋予他难以置信的能力。有了这些能力,约翰可以飞行、从眼睛里射出激光,甚至变得隐形。
约翰知道他必须善用这些力量,所以他决定成为一个超级英雄,用他的能力保护他的小镇和那里的居民。他开始每天训练,学习如何使用他的力量以及如何对抗邪恶。最终,约翰成为了人们所知的"隐形人"超级英雄,他用自己的力量帮助他人,让世界变得更美好。
这就是我的起源故事,我相信你会喜欢的!
从前,有一个拥有特殊能力的小男孩。他用他的能力帮助需要帮助的人并保护无辜者。他成为了人们所知的超级英雄,用他的力量与邪恶作斗争,保护这个世界。
告诉我关于羊驼的信息。
告诉我关于2019年墨西哥总统的信息。
编写一个打印前10个斐波那契数的Python程序。
def fibonacci(): a = 0 b = 1 for i in range(10): a, b = b, a + b print(a, b) print("斐波那契数列:", a, b) fibonacci()
编写一个程序,打印从1到100的数字。但对于3的倍数,打印"Fizz"而不是数字;对于5的倍数,打印"Buzz"。对于既是3的倍数又是5的倍数的数字,打印"FizzBuzz"。
<details><summary>其他方 法</summary>def print_numbers(n): for i in range(1, 101): if i % 3 == 0 and i % 5 == 0: print("FizzBuzz") elif i % 3 == 0: print("Fizz") elif i % 5 == 0: print("Buzz") else: print(i)
for i in range(1, 101): if i % 3 == 0 and i % 5 == 0: print("FizzBuzz") elif i % 3 == 0: print("Fizz") elif i % 5 == 0: print("Buzz") else: print(i)
for i in range(1, 101): if i % 3 == 0 and i % 5 == 0: print('FizzBuzz') elif i % 3 == 0: print('Fizz') elif i % 5 == 0: print('Buzz') else: print(i)
</details>for (let i = 1; i <= 100; i++) { if (i % 3 === 0 && i % 5 === 0) { console.log("FizzBuzz"); } else if (i % 3 === 0) { console.log("Fizz"); } else if (i % 5 === 0) { console.log("Buzz"); } else { console.log(i); } }
🔥 我们正在招聘上海人工智能实验室通用视觉组的实习生、博士后和全职研究人员,主要关注多模态和视觉基础模型。如果您有兴趣,请联系gaopengcuhk@gmail.com。
如果您发现我们的LLaMA-Adapter代码和论文有用,请引用:
@article{zhang2023llamaadapter, title = {LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention}, author={Zhang, Renrui and Han, Jiaming and Liu, Chris and Gao, Peng and Zhou, Aojun and Hu, Xiangfei and Yan, Shilin and Lu, Pan and Li, Hongsheng and Qiao, Yu}, journal={arXiv preprint arXiv:2303.16199}, year={2023} }
如果您发现我们的LLaMA-Adapter V2代码和论文有用,请引用:
@article{gao2023llamaadapterv2, title = {LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model}, author={Gao, Peng and Han, Jiaming and Zhang, Renrui and Lin, Ziyi and Geng, Shijie and Zhou, Aojun and Zhang, Wei and Lu, Pan and He, Conghui and Yue, Xiangyu and Li, Hongsheng and Qiao, Yu}, journal={arXiv preprint arXiv:2304.15010}, year={2023} }
本仓库得益于LLaMA、Stanford Alpaca和Alpaca-Lora。感谢他们出 色的工作。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景, 如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号