Project Icon

lidar-bonnetal

LiDAR点云语义分割开源框架

LiDAR-Bonnetal是一个开源的LiDAR点云语义分割框架,使用距离图像作为中间表示。该项目提供训练管道和多个基于SemanticKITTI数据集的预训练模型。框架支持多种网络架构,如SqueezeNet和DarkNet变体,并提供了这些模型在SemanticKITTI数据集上的预训练权重和预测结果。虽然项目已归档,但其代码和模型仍可用于研究和学习LiDAR数据处理技术。研究者可以利用这些资源进行点云语义分割的相关研究。

[!重要] 仓库已归档
本仓库已归档,不再积极维护。欢迎您浏览代码,但请注意,我们不再接受任何更新、问题或拉取请求。

感谢您的关注和贡献。

LiDAR-Bonnetal

使用距离图像对点云进行语义分割。

Andres MiliotoJens BehleyIgnacio VizzoCyrill Stachniss 开发

SemanticKITTI 数据集分割结果示例: ptcl ptcl

描述

本代码提供了训练和部署LiDAR扫描语义分割的代码,使用距离图像作为中间表示。训练流程可在 /train 中找到。我们将很快开源部署流程。

预训练模型

SemanticKITTI

要启用kNN后处理,只需在模型目录内的 arch_cfg.yaml 文件参数中将布尔值更改为 True

模型预测结果

SemanticKITTI

这些是训练集、验证集和测试集的预测结果。可以对训练集和验证集的性能进行评估,但对于测试集评估需要向基准测试提交(标签不公开)。

无后处理:

许可证

LiDAR-Bonnetal:MIT

版权所有 2019,Andres Milioto、Jens Behley、Cyrill Stachniss。波恩大学。

特此免费授予任何获得本软件及相关文档文件("软件")副本的人无限制地处理本软件的权利,包括但不限于使用、复制、修改、合并、发布、分发、再许可和/或销售本软件副本的权利,以及允许向其提供本软件的人这样做,但须符合以下条件:

上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。

本软件按"原样"提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途适用性和非侵权性的保证。在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,均由软件或软件的使用或其他交易引起、由软件引起或与之相关。

预训练模型:取决于模型和数据集

使用特定数据集的预训练模型保留该数据集的版权。

引用

如果您在任何学术工作中使用我们的框架、模型或预测结果,请引用原始论文数据集

@inproceedings{milioto2019iros,
  author    = {A. Milioto and I. Vizzo and J. Behley and C. Stachniss},
  title     = {{RangeNet++: Fast and Accurate LiDAR Semantic Segmentation}},
  booktitle = {IEEE/RSJ Intl.~Conf.~on Intelligent Robots and Systems (IROS)},
  year      = 2019,
  codeurl   = {https://github.com/PRBonn/lidar-bonnetal},
  videourl  = {https://youtu.be/wuokg7MFZyU},
}
@inproceedings{behley2019iccv,
  author    = {J. Behley and M. Garbade and A. Milioto and J. Quenzel and S. Behnke and C. Stachniss and J. Gall},
  title     = {{SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences}},
  booktitle = {Proc. of the IEEE/CVF International Conf.~on Computer Vision (ICCV)},
  year      = {2019}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号