Awesome-Language-Model-on-Graphs

Awesome-Language-Model-on-Graphs

图上大语言模型研究进展及资源汇总

该资源列表汇总了图上大语言模型(LLMs on Graphs)领域的前沿研究成果。内容涵盖纯图、文本属性图和文本配对图等多个方面,包括数据集、直接回答、启发式推理和算法推理等关键主题。列表基于综述论文整理,并持续更新,为研究人员提供全面参考,推动图上大语言模型研究进展。

LLM推理基准测试知识图谱Github开源项目

Awesome-Language-Model-on-Graphs Awesome

A curated list of papers and resources about large language models (LLMs) on graphs based on our survey paper: Large Language Models on Graphs: A Comprehensive Survey.

This repo will be continuously updated. Don't forget to star <img src="./fig/star.svg" width="15" height="15" /> it and keep tuned!

Please cite the paper in Citations if you find the resource helpful for your research. Thanks!

<p align="center"> <img src="./fig/intro.svg" width="90%" style="align:center;"/> </p>

Why LLMs on graphs?

Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g., reasoning). While LLMs are mainly designed to process pure texts, there are many real-world scenarios where text data are associated with rich structure information in the form of graphs (e.g., academic networks, and e-commerce networks) or scenarios where graph data are captioned with rich textual information (e.g., molecules with descriptions). Besides, although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning). In this paper, we provide a comprehensive review of scenarios and techniques related to large language models on graphs.

Contents

Keywords Convention

The Transformer architecture used in the work, e.g., EncoderOnly, DecoderOnly, EncoderDecoder.

The size of the large language model, e.g., medium (i.e., less than 1B parameters), LLM (i.e., more than 1B parameters).

Perspectives

  1. Unifying Large Language Models and Knowledge Graphs: A Roadmap. preprint

    Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, Xindong Wu [PDF], 2023.6

  2. Integrating Graphs with Large Language Models: Methods and Prospects preprint

    Shirui Pan, Yizhen Zheng, Yixin Liu [PDF], 2023.10

  3. Towards graph foundation models: A survey and beyond. preprint

    Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. [PDF], 2023.10

  4. A Survey of Graph Meets Large Language Model: Progress and Future Directions. preprint

    Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, Jeffrey Xu Yu. [PDF], 2023.11

Pure Graphs

<img src="./fig/star.svg" width="15" height="15" /> Datasets

Table 3 in our survey paper Large Language Models on Graphs: A Comprehensive Survey.

<p align="center"> <img src="./fig/puregraph-data.jpg" width="90%" style="align:center;"/> </p>

<img src="./fig/star.svg" width="15" height="15" /> Direct Answering

  1. Can Language Models Solve Graph Problems in Natural Language? preprint

    Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, Yulia Tsvetkov. [PDF] [Code], 2023.5,

  2. GPT4Graph: Can Large Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmarking. preprint

    Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, Shi Han. [PDF], 2023.5,

  3. Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis. preprint

    Chang Liu, Bo Wu. [PDF] [Code], 2023.8, [PDF], 2023.5,

  4. Talk Like A Graph: Encoding Graphs For Large Language Models. preprint

    Bahare Fatemi, Jonathan Halcrow, Bryan Perozzi. [PDF], 2023.10,

  5. GraphLLM: Boosting Graph Reasoning Ability of Large Language Model. preprint

    Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, Yang Yang. [PDF] [Code], 2023.10,

  6. LLM4DyG: Can Large Language Models Solve Problems on Dynamic Graphs?. preprint

    Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, Simin Wu, Wenwu Zhu [PDF] [Code], 2023.10,

  7. Which Modality should I use - Text, Motif, or Image? : Understanding Graphs with Large Language Models. preprint

    Debarati Das, Ishaan Gupta, Jaideep Srivastava, Dongyeop Kang [PDF] [Code], 2023.11,

  8. GraphArena: Benchmarking Large Language Models on Graph Computational Problems. preprint

    Jianheng Tang, Qifan Zhang, Yuhan Li, Jia Li [PDF] [Code], 2024.7,

<img src="./fig/star.svg" width="15" height="15" /> Heuristic Reasoning

  1. StructGPT: A General Framework for Large Language Model to Reason over Structured Data. preprint

    Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, Ji-Rong Wen. [PDF] [Code], 2023.5,

  2. Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. preprint

    Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-Yeung Shum, Jian Guo. [PDF] [Code], 2023.7,

  3. Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations. preprint

    Likang Wu, Zhaopeng Qiu, Zhi Zheng, Hengshu Zhu, Enhong Chen. [PDF] [Code], 2023.7,

  4. Knowledge Graph Prompting for Multi-Document Question Answering. AAAI2024

    Yu Wang, Nedim Lipka, Ryan Rossi, Alex Siu, Ruiyi Zhang, Tyler Derr. [PDF] [Code], 2023.8,

  5. ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning. preprint

    Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, Shirui Pan. [PDF] [Code], 2023.9,

  6. Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning. preprint

    Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, Shirui Pan. [PDF] [Code], 2023.10,

  7. Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models. preprint

    Junchi Yu, Ran He, Rex Ying. [PDF], 2023.10,

  8. Large Language Models Can Learn Temporal Reasoning. preprint

    Siheng Xiong, Ali Payani, Ramana Kompella, Faramarz Fekri. [PDF], 2024.1,

  9. Exploring the Limitations of Graph Reasoning in Large Language Models. preprint

    Palaash Agrawal, Shavak Vasania, Cheston Tan. [PDF], 2024.2,

  10. Rendering Graphs for Graph Reasoning in Multimodal Large Language Models. preprint

    Yanbin Wei, Shuai Fu, Weisen Jiang, James T. Kwok, Yu Zhang. [PDF], 2024.2,

  11. Graph-enhanced Large Language Models in Asynchronous Plan Reasoning. preprint

    Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, Janet B. Pierrehumbert. [PDF], 2024.2,

  12. Microstructures and Accuracy of Graph Recall by Large Language Models. preprint

    Yanbang Wang, Hejie Cui, Jon Kleinberg. [PDF], 2024.2,

  13. Structure Guided Prompt: Instructing Large Language Model in Multi-Step Reasoning by Exploring Graph Structure of the Text. preprint

    Kewei Cheng, Nesreen K. Ahmed, Theodore Willke, Yizhou Sun. [PDF], 2024.2,

  14. GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability. preprint

    Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, Hai Jin. [PDF], 2024.3,

  15. Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments. preprint

    Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang Huang, Ling Chen, Qingwei Lin, Dongmei Zhang, Saravan Rajmohan, Qi Zhang. [PDF], 2024.3,

  16. **Exploring the

编辑推荐精选

Manus

Manus

全面超越基准的 AI Agent助手

Manus 是一款通用人工智能代理平台,能够将您的创意和想法迅速转化为实际成果。无论是定制旅行规划、深入的数据分析,还是教育支持与商业决策,Manus 都能高效整合信息,提供精准解决方案。它以直观的交互体验和领先的技术,为用户开启了一个智慧驱动、轻松高效的新时代,让每个灵感都能得到完美落地。

飞书知识问答

飞书知识问答

飞书官方推出的AI知识库 上传word pdf即可部署AI私有知识库

基于DeepSeek R1大模型构建的知识管理系统,支持PDF、Word、PPT等常见文档格式解析,实现云端与本地数据的双向同步。系统具备实时网络检索能力,可自动关联外部信息源,通过语义理解技术处理结构化与非结构化数据。免费版本提供基础知识库搭建功能,适用于企业文档管理和个人学习资料整理场景。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

TraeAI IDE协作生产力转型热门AI工具
酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

使用教程AI工具酷表ChatExcelAI智能客服AI营销产品
DeepEP

DeepEP

DeepSeek开源的专家并行通信优化框架

DeepEP是一个专为大规模分布式计算设计的通信库,重点解决专家并行模式中的通信瓶颈问题。其核心架构采用分层拓扑感知技术,能够自动识别节点间物理连接关系,优化数据传输路径。通过实现动态路由选择与负载均衡机制,系统在千卡级计算集群中维持稳定的低延迟特性,同时兼容主流深度学习框架的通信接口。

DeepSeek

DeepSeek

全球领先开源大模型,高效智能助手

DeepSeek是一家幻方量化创办的专注于通用人工智能的中国科技公司,主攻大模型研发与应用。DeepSeek-R1是开源的推理模型,擅长处理复杂任务且可免费商用。

KnowS

KnowS

AI医学搜索引擎 整合4000万+实时更新的全球医学文献

医学领域专用搜索引擎整合4000万+实时更新的全球医学文献,通过自主研发AI模型实现精准知识检索。系统每日更新指南、中英文文献及会议资料,搜索准确率较传统工具提升80%,同时将大模型幻觉率控制在8%以下。支持临床建议生成、文献深度解析、学术报告制作等全流程科研辅助,典型用户反馈显示每周可节省医疗工作者70%时间。

Windsurf Wave 3

Windsurf Wave 3

Windsurf Editor推出第三次重大更新Wave 3

新增模型上下文协议支持与智能编辑功能。本次更新包含五项核心改进:支持接入MCP协议扩展工具生态,Tab键智能跳转提升编码效率,Turbo模式实现自动化终端操作,图片拖拽功能优化多模态交互,以及面向付费用户的个性化图标定制。系统同步集成DeepSeek、Gemini等新模型,并通过信用点数机制实现差异化的资源调配。

AI IDE
腾讯元宝

腾讯元宝

腾讯自研的混元大模型AI助手

腾讯元宝是腾讯基于自研的混元大模型推出的一款多功能AI应用,旨在通过人工智能技术提升用户在写作、绘画、翻译、编程、搜索、阅读总结等多个领域的工作与生活效率。

AI 办公助手AI对话AI助手AI工具腾讯元宝智能体热门
Grok3

Grok3

埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型

Grok3 是由埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型,常被马斯克称为“地球上最聪明的 AI”。它不仅是在前代产品 Grok 1 和 Grok 2 基础上的一次飞跃,还在多个关键技术上实现了创新突破。

下拉加载更多