I hope the branch can help anyone who wants to do research about mesh processing.
Contact me: qiujie_dong(AT)mail.sdu.edu.cn, Qiujie.Jay.Dong(AT)gmail.com.
Thanks for your valuable contribution to the research.:smiley:
<h1></h1> <!--__`dat.`__: dataset   |   __`cls.`__: classification  __`seg.`__: segmentation  __`ret.`__: retrieval  -->- Symbols
Statistics: :star: code is available & stars >= 100 | :fire: citation >= 50
<h1></h1>- Topics
Feature Extraction of Meshes or Mesh segmentation
BRUNO ROY. "Neural Shape Diameter Function for Efficient Mesh Segmentation", SIGGRAPH(2023). [paper]
MWFormer: Haoyang peng, Meng-Hao Guo, Zheng-Ning Liu, Yong-Liang Yang, Tai-Jiang Mu. "MWFormer: Mesh Understanding with Window-Based Transformer", SSRN(2023). [paper]
Picasso++: Huan Lei, Naveed Akhtar, Mubarak Shah, Ajmal Mian. "Mesh Convolution with Continuous Filters for 3D Surface Parsing", TNNLS(2023). [paper] [code] :star:
DGNet: Xiang-Li Li, Zheng-Ning Liu, Tuo Chen, Tai-Jiang Mu, Ralph R. Martin, Shi-Min Hu. "Mesh Neural Networks Based on Dual Graph Pyramids", TVCG(2023). [paper] [code]
Laplacian2Mesh: Qiujie Dong, Zixiong Wang, Manyi Li, Junjie Gao, Shuangmin Chen, Zhenyu Shu, Shiqing Xin, Changhe Tu, Wenping Wang. "Laplacian2Mesh: Laplacian-Based Mesh Understanding", TVCG( 2023). [paper] [code]
MeshFormers: Hao-Yang Peng, Meng-Hao Guo, Zheng-Ning Liu, Yong-Liang Yang, Tai-Jiang Mu. "MeshFormers: Transformer-Based Networks for Mesh Understanding", SSRN(2022). [paper]
MeshFormer: Yuan Li, Xiangyang He, Yankai Jiang, Huan Liu, Yubo Tao, Lin Hai. "MeshFormer: High-resolution Mesh Segmentation with Graph Transformer", CGF(2022). [paper]
DiffusionNet: Nicholas Sharp, Souhaib Attaiki, Keenan Crane, Maks Ovsjanikov. "DiffusionNet: Discretization Agnostic Learning on Surfaces", TOG( 2022). [paper] [code]
SubdivNet: Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang Mu, Ralph R. Martin. " Subdivision-Based Mesh Convolution Networks", TOG( 2022). [paper] [code]
Laplacian Mesh Transformer: Xiao-Juan Li, Jie Yang, Fang-Lue Zhan. "Laplacian Mesh Transformer: Dual Attention and Topology Aware Network for 3D Mesh Classification and Segmentation", ECCV( 2022). [paper]
HodgeNet: Dmitriy Smirnov, Justin Solomon. "HodgeNet: Learning Spectral Geometry on Triangle Meshes", SIGGRAPH( 2021). [paper] [code]
MeshNet++: Vinit Veerendraveer Singh, Shivanand Venkanna Sheshappanavar, Chandra Kambhamettu. "MeshNet++: A Network with a Face", ACM MM(2021). [paper]
Long Zhang, Jianwei Guo, Jun Xiao, Xiaopeng Zhang, Dong-Ming Yan. "Blending Surface Segmentation and Editing for 3D Models", TVCG(2020). [paper]
PD-MeshNet: Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, Luca Carlone. "Primal-Dual Mesh Convolutional Neural Networks", NeurIPS(2020) . [paper] [code]
CurvaNet: Wenchong He, Zhe Jiang, Chengming Zhang, Arpan Man Sainju. "CurvaNet: Geometric Deep Learning based on Directional Curvature for 3D Shape Analysis", KDD(2020). [paper]
MeshSegNet: Chunfeng Lian, Li Wang, Tai-Hsien Wu, Fan Wang, Pew-Thian Yap, Ching-Chang Ko, Dinggang Shen. "Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners", MICCAI( 2019) and TMI(2020) . [paper] [code]
MGCN: Yiqun Wang, Jing Ren, Dong-Ming Yan, Jianwei Guo, Xiaopeng Zhang, Peter Wonka. "MGCN: Descriptor Learning using Multiscale GCNs", SIGGRAPH(2020) . [project] [paper] [code]
MedMeshCNN: Lisa Schneider, Annika Niemann, Oliver Beuing, Bernhard Preim, Sylvia Saalfeld. "MedMeshCNN - Enabling MeshCNN for Medical Surface Models", arXiv(2020) . [paper] [code]
MeshWalker: Alon Lahav, Ayellet Tal. "MeshWalker: Deep Mesh Understanding by Random Walks", SIGGRAPH Asia(2020) . [paper] [code]
Amit Kohli, Vincent Sitzmann, Gordon Wetzstein. "Semantic Implicit Neural Scene RepresentationsWith Semi-Supervised Training", 3DV( 2020). [project] [paper] [code]
Zhenyu Shu, Xiaoyong Shen, Shiqing Xin, Qingjun Chang, Jieqing Feng, Ladislav Kavan, Ligang Liu. "Scribble-Based 3D Shape Segmentation via Weakly-Supervised Learning", TVCG( 2020). [paper]
LaplacianNet: Yi-Ling Qiao, Lin Gao, Jie Yang, Paul L. Rosin, Yu-Kun Lai, Xilin Chen. "LaplacianNet: Learning on 3D Meshes with Laplacian Encoding and Pooling", TVCG(2019). [paper]
VoxSegNet: Zongji Wang, Feng Lu. "VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes", TVCG( 2019). [paper] [code]
BAE-Net: Chen Zhiqin, Yin Kangxue, Fisher Matthew, Chaudhuri Siddhartha, Zhang Hao. "Bae-net: Branched autoencoder for shape co-segmentation", ICCV(2019) . [paper] [code]
MeshNet: Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, Yue Gao. "MeshNet: Mesh Neural Network for 3D Shape Representation", AAAI(2019) . [paper] [code] :star:
DGCNN: Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. "Dynamic Graph CNN for Learning on Point Clouds", TOG(2019) . [project] [paper] [code] :star::fire:
MeshCNN: Hanocka Rana, Hertz Amir, Fish Noa, Giryes Raja, Fleishman Shachar, Cohen-Or Daniel. "MeshCNN: A Network with an Edge", SIGGRAPH(2019) . [project] [paper] [code] [code from NVIDIA] :star::fire:
Xiaojie Xu, Chang Liu, Youyi Zheng. "3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks", TVCG(2019). [paper]
Zhao Wang; Li Chen. "Mesh Segmentation for High Resolution Medical Data", CISP-BMEI(2019) . [paper]
MDGCNN: ADRIEN POULENARD, MAKS OVSJANIKOV. "Multi-directional Geodesic Neural Networks via Equivariant Convolution", TOG(2018). [paper] [code] :fire:
George David, Xie Xianghua, Tam Gary KL. "3D mesh segmentation via multi-branch 1D convolutional neural networks", GM( 2018). [paper]
A Survey: Rui S. V. Rodrigues, Jos´e F. M. Morgado, Abel J. P. Gomes. "Part‐Based Mesh Segmentation: A Survey", COMPUTER GRAPHICS forum(2018). [paper]
Pengyu Wang, Yuan Gan, Panpan Shui, Fenggen Yu, Yan Zhang, Songle Chen, Zhengxing Sun. "3D Shape Segmentation via Shape Fully Convolutional Networks", CG(2018) . [paper] [code]
Pointgrid: Truc Le, Ye Duan. "Pointgrid: A deep network for 3d shape understanding", CVPR(2018) . [paper] [code_PyTorch] [code_TensorFlow] :fire:
PointCNN: Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen. "PointCNN: Convolution On X-Transformed Points", NIPS(2018) . [paper] [code] :star::fire:
SyncSpecCNN: Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas. "SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation", CVPR( 2017). [paper] [code] :fire:
DCN: Haotian Xu, Ming Dong, Zichun Zhong. "Directionally convolutional networks for 3d shape segmentation", ICCV( 2017) . [paper]
Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, Jitendra Malik. "Learning shape abstractions by assembling volumetric primitives", CVPR(2017) . [project] [paper] [code] :star::fire:
MVRNN: Le Truc, Bui Giang, Duan Ye. "A multi-view recurrent neural network for 3D mesh segmentation", Computers & Graphics(2017) . [paper] [code]
A Survey: Medhat Rashad, Mohamed Khamiss, Mohamed MOUSA. "A Review on Mesh Segmentation Techniques", IJEIT(2017) . [paper]
ShapePFCN: Evangelos Kalogerakis, Melinos Averkiou, Subhransu
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支 持,帮助用户精准表达,轻松呈现各种信息。
深度推 理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财 务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号