Mesh_Segmentation

Mesh_Segmentation

3D网格分割与特征提取技术发展概览

本项目整理了3D网格分割和特征提取领域的重要研究进展,涵盖2019年至2024年间的创新技术,如变形自动编码器、窗口变换器和图卷积网络等。同时收录了相关数据集、课程资源和关键论文,为该领域研究人员提供全面参考,促进3D网格处理技术的发展。

mesh processing特征提取分割深度学习计算机图形学Github开源项目

Mesh Processing

I hope the branch can help anyone who wants to do research about mesh processing.

Contact me: qiujie_dong(AT)mail.sdu.edu.cn, Qiujie.Jay.Dong(AT)gmail.com.

Thanks for your valuable contribution to the research.:smiley:

<h1>
- Symbols
</h1> <!--__`dat.`__: dataset &emsp; | &emsp; __`cls.`__: classification &emsp;__`seg.`__: segmentation &emsp;__`ret.`__: retrieval &emsp;-->

Statistics: :star: code is available & stars >= 100  |  :fire: citation >= 50

<h1>
- Topics
</h1>

Feature Extraction of Meshes or Mesh segmentation

2024

  • DAE-Net: Zhiqin Chen, Qimin Chen, Hang Zhou, Hao Zhang. "DAE-Net: Deforming Auto-Encoder for fine-grained shape co-segmentation", SIGGRAPH(2024). [paper] [code]

2023

  • BRUNO ROY. "Neural Shape Diameter Function for Efficient Mesh Segmentation", SIGGRAPH(2023). [paper]

  • MWFormer: Haoyang peng, Meng-Hao Guo, Zheng-Ning Liu, Yong-Liang Yang, Tai-Jiang Mu. "MWFormer: Mesh Understanding with Window-Based Transformer", SSRN(2023). [paper]

  • Picasso++: Huan Lei, Naveed Akhtar, Mubarak Shah, Ajmal Mian. "Mesh Convolution with Continuous Filters for 3D Surface Parsing", TNNLS(2023). [paper] [code] :star:

  • DGNet: Xiang-Li Li, Zheng-Ning Liu, Tuo Chen, Tai-Jiang Mu, Ralph R. Martin, Shi-Min Hu. "Mesh Neural Networks Based on Dual Graph Pyramids", TVCG(2023). [paper] [code]

2022

  • Laplacian2Mesh: Qiujie Dong, Zixiong Wang, Manyi Li, Junjie Gao, Shuangmin Chen, Zhenyu Shu, Shiqing Xin, Changhe Tu, Wenping Wang. "Laplacian2Mesh: Laplacian-Based Mesh Understanding", TVCG( 2023). [paper] [code]

  • MeshFormers: Hao-Yang Peng, Meng-Hao Guo, Zheng-Ning Liu, Yong-Liang Yang, Tai-Jiang Mu. "MeshFormers: Transformer-Based Networks for Mesh Understanding", SSRN(2022). [paper]

  • MeshFormer: Yuan Li, Xiangyang He, Yankai Jiang, Huan Liu, Yubo Tao, Lin Hai. "MeshFormer: High-resolution Mesh Segmentation with Graph Transformer", CGF(2022). [paper]

  • DiffusionNet: Nicholas Sharp, Souhaib Attaiki, Keenan Crane, Maks Ovsjanikov. "DiffusionNet: Discretization Agnostic Learning on Surfaces", TOG( 2022). [paper] [code]

  • SubdivNet: Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang Mu, Ralph R. Martin. " Subdivision-Based Mesh Convolution Networks", TOG( 2022). [paper] [code]

  • Laplacian Mesh Transformer: Xiao-Juan Li, Jie Yang, Fang-Lue Zhan. "Laplacian Mesh Transformer: Dual Attention and Topology Aware Network for 3D Mesh Classification and Segmentation", ECCV( 2022). [paper]

2021

  • HodgeNet: Dmitriy Smirnov, Justin Solomon. "HodgeNet: Learning Spectral Geometry on Triangle Meshes", SIGGRAPH( 2021). [paper] [code]

  • MeshNet++: Vinit Veerendraveer Singh, Shivanand Venkanna Sheshappanavar, Chandra Kambhamettu. "MeshNet++: A Network with a Face", ACM MM(2021). [paper]

2020

  • Long Zhang, Jianwei Guo, Jun Xiao, Xiaopeng Zhang, Dong-Ming Yan. "Blending Surface Segmentation and Editing for 3D Models", TVCG(2020). [paper]

  • PD-MeshNet: Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, Luca Carlone. "Primal-Dual Mesh Convolutional Neural Networks", NeurIPS(2020) . [paper] [code]

  • CurvaNet: Wenchong He, Zhe Jiang, Chengming Zhang, Arpan Man Sainju. "CurvaNet: Geometric Deep Learning based on Directional Curvature for 3D Shape Analysis", KDD(2020). [paper]

  • MeshSegNet: Chunfeng Lian, Li Wang, Tai-Hsien Wu, Fan Wang, Pew-Thian Yap, Ching-Chang Ko, Dinggang Shen. "Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners", MICCAI( 2019) and TMI(2020) . [paper] [code]

  • MGCN: Yiqun Wang, Jing Ren, Dong-Ming Yan, Jianwei Guo, Xiaopeng Zhang, Peter Wonka. "MGCN: Descriptor Learning using Multiscale GCNs", SIGGRAPH(2020) . [project] [paper] [code]

  • MedMeshCNN: Lisa Schneider, Annika Niemann, Oliver Beuing, Bernhard Preim, Sylvia Saalfeld. "MedMeshCNN - Enabling MeshCNN for Medical Surface Models", arXiv(2020) . [paper] [code]

  • MeshWalker: Alon Lahav, Ayellet Tal. "MeshWalker: Deep Mesh Understanding by Random Walks", SIGGRAPH Asia(2020) . [paper] [code]

  • Amit Kohli, Vincent Sitzmann, Gordon Wetzstein. "Semantic Implicit Neural Scene RepresentationsWith Semi-Supervised Training", 3DV( 2020). [project] [paper] [code]

  • Zhenyu Shu, Xiaoyong Shen, Shiqing Xin, Qingjun Chang, Jieqing Feng, Ladislav Kavan, Ligang Liu. "Scribble-Based 3D Shape Segmentation via Weakly-Supervised Learning", TVCG( 2020). [paper]

2019

  • LaplacianNet: Yi-Ling Qiao, Lin Gao, Jie Yang, Paul L. Rosin, Yu-Kun Lai, Xilin Chen. "LaplacianNet: Learning on 3D Meshes with Laplacian Encoding and Pooling", TVCG(2019). [paper]

  • VoxSegNet: Zongji Wang, Feng Lu. "VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes", TVCG( 2019). [paper] [code]

  • BAE-Net: Chen Zhiqin, Yin Kangxue, Fisher Matthew, Chaudhuri Siddhartha, Zhang Hao. "Bae-net: Branched autoencoder for shape co-segmentation", ICCV(2019) . [paper] [code]

  • MeshNet: Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, Yue Gao. "MeshNet: Mesh Neural Network for 3D Shape Representation", AAAI(2019) . [paper] [code] :star:

  • DGCNN: Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. "Dynamic Graph CNN for Learning on Point Clouds", TOG(2019) . [project] [paper] [code] :star::fire:

  • MeshCNN: Hanocka Rana, Hertz Amir, Fish Noa, Giryes Raja, Fleishman Shachar, Cohen-Or Daniel. "MeshCNN: A Network with an Edge", SIGGRAPH(2019) . [project] [paper] [code] [code from NVIDIA] :star::fire:

  • Xiaojie Xu, Chang Liu, Youyi Zheng. "3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks", TVCG(2019). [paper]

  • Zhao Wang; Li Chen. "Mesh Segmentation for High Resolution Medical Data", CISP-BMEI(2019) . [paper]

Before 2019

  • MDGCNN: ADRIEN POULENARD, MAKS OVSJANIKOV. "Multi-directional Geodesic Neural Networks via Equivariant Convolution", TOG(2018). [paper] [code] :fire:

  • George David, Xie Xianghua, Tam Gary KL. "3D mesh segmentation via multi-branch 1D convolutional neural networks", GM( 2018). [paper]

  • A Survey: Rui S. V. Rodrigues, Jos´e F. M. Morgado, Abel J. P. Gomes. "Part‐Based Mesh Segmentation: A Survey", COMPUTER GRAPHICS forum(2018). [paper]

  • Pengyu Wang, Yuan Gan, Panpan Shui, Fenggen Yu, Yan Zhang, Songle Chen, Zhengxing Sun. "3D Shape Segmentation via Shape Fully Convolutional Networks", CG(2018) . [paper] [code]

  • Pointgrid: Truc Le, Ye Duan. "Pointgrid: A deep network for 3d shape understanding", CVPR(2018) . [paper] [code_PyTorch] [code_TensorFlow] :fire:

  • PointCNN: Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen. "PointCNN: Convolution On X-Transformed Points", NIPS(2018) . [paper] [code] :star::fire:

  • SyncSpecCNN: Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas. "SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation", CVPR( 2017). [paper] [code] :fire:

  • DCN: Haotian Xu, Ming Dong, Zichun Zhong. "Directionally convolutional networks for 3d shape segmentation", ICCV( 2017) . [paper]

  • Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, Jitendra Malik. "Learning shape abstractions by assembling volumetric primitives", CVPR(2017) . [project] [paper] [code] :star::fire:

  • MVRNN: Le Truc, Bui Giang, Duan Ye. "A multi-view recurrent neural network for 3D mesh segmentation", Computers & Graphics(2017) . [paper] [code]

  • A Survey: Medhat Rashad, Mohamed Khamiss, Mohamed MOUSA. "A Review on Mesh Segmentation Techniques", IJEIT(2017) . [paper]

  • ShapePFCN: Evangelos Kalogerakis, Melinos Averkiou, Subhransu

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多