LLMRank

LLMRank

大语言模型在推荐系统排序中的应用与挑战

LLMRank项目聚焦大语言模型在推荐系统排序中的潜力。研究采用指令跟随方法,将用户行为历史和候选项整合到自然语言模板中。实验结果显示,大语言模型具备强大的零样本排序能力,但在处理用户历史顺序信息时面临挑战。通过设计特定提示策略,可有效提升排序表现。此外,项目还深入分析了排序过程中的偏见问题,并提出了相应的解决方案。

LLMRank大语言模型推荐系统零样本排序偏见Github开源项目

LLMRank

LLMRank旨在研究大语言模型作为推荐系统排序模型的能力。[论文]

Yupeng Hou†, Junjie Zhang†, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, Wayne Xin Zhao. 大语言模型作为推荐系统的零样本排序器。ECIR 2024。

🛍️ 大语言模型作为零样本排序器

我们在指令跟随范式中使用大语言模型作为排序模型。对于每个用户,我们首先构建两个自然语言模式,分别包含顺序交互历史检索的候选项目。然后将这些模式填入自然语言模板作为最终指令。通过这种方式,预期大语言模型能理解指令并按照指令建议输出排序结果。

🚀 快速开始

  1. 将您的OpenAI API密钥写入llmrank/openai_api.yaml
  2. 解压数据集文件。
    cd llmrank/dataset/ml-1m/; unzip ml-1m.inter.zip cd llmrank/dataset/Games/; unzip Games.inter.zip
    有关数据准备的详细信息,请参阅[数据准备]
  3. 安装依赖项。
    pip install -r requirements.txt
  4. 在ML-1M数据集上评估ChatGPT的零样本排序能力。
    cd llmrank/ python evaluate.py -m Rank

🔍 关键发现

请点击每个"观察"下方的链接,查找重现结果的代码和脚本。

观察1. 大语言模型难以感知用户历史的顺序,但可以被触发感知顺序

大语言模型可以利用历史行为进行个性化排序,但难以感知给定顺序交互历史的顺序

通过采用特别设计的提示,如侧重近期的提示和上下文学习,大语言模型可以被触发感知历史用户行为的顺序,从而提高排序性能。

<div align="center"> <img src='https://yellow-cdn.veclightyear.com/0a4dffa0/f22b4106-9fa9-4048-bf5e-a49682bccc6e.png' width="75%"> </div>

代码在这里 -> [重现脚本]

观察2. 使用大语言模型进行排序存在偏见

大语言模型在排序时受到位置偏见和流行度偏见的影响,这可以通过特别设计的提示或自举策略来缓解。

<div align="center"> <img src='https://yellow-cdn.veclightyear.com/0a4dffa0/10f5089f-d182-408f-810b-f0b70745a69d.png' width="75%"> </div>

代码在这里 -> [重现脚本]

观察3. 有前景的零样本排序能力

大语言模型具有有前景的零样本排序能力,...

<div align="center"> <img src='https://yellow-cdn.veclightyear.com/0a4dffa0/577169c7-98d8-4a16-a3ee-d1a08f502b94.png' width="75%"> </div>

...,特别是对于由多个具有不同实用策略的候选生成模型检索的候选项。

<div align="center"> <img src='https://yellow-cdn.veclightyear.com/0a4dffa0/94463c7e-2fc3-4724-9c3a-c7f80da3808d.png' width="70%"> </div>

代码在这里 -> [重现脚本]

🌟 致谢

如果您发现我们的代码有帮助,请引用以下论文。

@inproceedings{hou2024llmrank, title={Large Language Models are Zero-Shot Rankers for Recommender Systems}, author={Yupeng Hou and Junjie Zhang and Zihan Lin and Hongyu Lu and Ruobing Xie and Julian McAuley and Wayne Xin Zhao}, booktitle={{ECIR}}, year={2024} }

实验使用开源推荐库RecBole进行。

我们在零样本推荐基准测试中使用了UniSRecVQ-Rec发布的预训练模型。

感谢@neubig提供的出色的异步调度OpenAI API实现。[代码]

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多