An awesome & curated list for Artificial General Intelligence, an emerging inter-discipline field that combines artificial intelligence and computational cognitive sciences as majority, alone with probability and statistics, formal logic, cognitive and developmental psychology, computational philosophy, cognitive neuroscience, and computational sociology. We are promoting high-level machine intelligence by getting inspirations from the way that human learns and thinks, while obtaining a deeper understanding of human cognition simultaneously. We believe that this kind of reciprocative research is a potential way towards our big picture: building human-level intelligent systems with capabilities such as abstracting, explaining, learning, planning, and making decisions. And such intelligence may generally help people improve scientific research, engineering, and the arts, which are the hallmarks of human intelligence.
Awesome AGI & CoCoSci is an all-in-one collection, consisting of recources from basic courses and tutorials, to papers and books around diverse topics in mutiple perspectives. Both junior and senior researchers, whether learning, working on, or working around AGI and CoCoSci, meet their interest here.
Contributions are greatly welcomed! Please refer to Contribution Guidelines before taking any action.
<span id = "c"></span>
Abduction - Plato Stanford. A computational philosophy account on Abduction, one of the three thinking patterns besides Induction and Deduction, being unique for its potential to introduce new ideas into current knowledge.
Scientific Explanation - Plato Stanford. A computational philosophy account on Scientific Explanation, a canonical application of Abduction.
Scientific Reduction - Plato Stanford. A computational philosophy account on Scientific Reduction, which comes with no explicit boundary with Explanation.
Non-monotonic Logic - Plato Stanford. A computational philosophy account on Non-monotonic Logic, a family of formal frameworks devised to capture and represent defeasible inference.
Philosophical Writings of Peirce - Courier Corporation, 1955. [All Versions]. Original writings by C. S. Peirce, the establisher of Abduction.
The Inference to the Best Explanation - Philosophical Review, 1965. [All Versions]. Lipton's original paper on Inference to the Best Explanation as a special case of Abduction.
Inference to the Best Explanation - Routledge, 1991. [All Versions]. Lipton's book on Inference to the Best Explanation as a special case of Abduction.
A Study of Thinking - Routledge, 1956. [All Versions]. A classic book on thinking patterns.
Abductive Reasoning and Learning - Springer, 2000. [All Versions]. An introductory account on abductive reasoning.
Abductive Reasoning: Logical Investigations into Discovery and Explanation - Springer, 2006. [All Versions]. An introductory account on abductive reasoning.
Abductive Cognition: The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning - Springer, 2009. [All Versions].
Explanation and Abductive Inference - The Oxford Handbook of Thinking and Reasoning, 2012. [All Versions]. A handbook on the formulations of Abduction.
Probabilistic models of cognition: Conceptual foundations - Trends in Cognitive Sciences, 2006. [All Versions]. A Bayesian account of Abduction.
The structure and function of explanations - Trends in Cognitive Sciences, 2006. [All Versions]. Basic computation modes of Abduction.
Explanatory Preferences Shape Learning and Inference - Trends in Cognitive Sciences, 2016. [All Versions]. An account showing that inductive bias is critical for explanation.
The Role of Explanatory Considerations in Updating - Cognition, 2015. [All Versions].
Explanation, updating, and accuracy - Journal of Cognitive Psychology, 2016. [All Versions].
Best, second-best, and good-enough explanations: How they matter to reasoning - Journal of Experimental Psychology, 2018. [All Versions]. A subjective probability account of Abduction.
How explanation guides belief change - Trends in Cognitive Sciences, 2021. [All Versions]. A review on the subjective probability account of Abduction.
Use of current explanations in multicausal abductive reasoning - Cognitive Science, 2001. [All Versions].
Kinematic mental simulations in abduction and deduction - Proceedings of the National Academy of Sciences, 2013. [All Versions].
Patterns of abduction - Synthese, 2007. [All Versions]. A categorization for Abduction in the account of pure philosophy.
Abduction: A categorical characterization - Journal of Applied Logic, 2015. [All Versions].
Defending Abduction - Philosophy of Science, 1999. [All Versions].
On the distinction between Peirce's abduction and Lipton's Inference to the best explanation - Synthese, 2011. [All Versions].
Abduction − the context of discovery + underdetermination = inference to the best explanation - Synthese, 2019. [[All
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果 处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例 等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号