Project Icon

deepseek-coder-33B-instruct-GGUF

DeepSeek Coder 33B Instruct模型GGUF量化版本

本项目提供DeepSeek Coder 33B Instruct模型的GGUF量化版本。GGUF是llama.cpp团队开发的新格式,替代了旧有的GGML。该模型专注于计算机科学领域,不回答政治敏感或安全隐私等无关问题。项目包含多种量化参数选项,支持CPU和GPU推理,兼容多种第三方界面和库。用户可根据硬件配置和使用需求选择适合的量化版本。

DeepSeek-Coder-V2-Lite-Instruct-GGUF - 高性能代码模型的多版本量化优化支持多种硬件推理应用
DeepSeek-CoderGithubHuggingface人工智能代码生成开源项目模型模型压缩量化模型
本项目针对DeepSeek-Coder-V2-Lite-Instruct模型进行量化优化,提供20多种GGUF格式文件,大小从6GB到17GB不等。采用llama.cpp的imatrix技术实现高效压缩,同时保持模型性能。用户可根据硬件条件选择适合的版本,支持NVIDIA、AMD等平台的深度学习推理。
deepseek-coder-6.7B-instruct-GGUF - Deepseek全新GGUF格式 高效代码智能助手专注计算机科学
Deepseek Coder 6.7B InstructGPU加速GithubHuggingface开源项目模型模型格式计算机科学量化
DeepSeek引入新型GGUF格式,提供高效代码助手,专注计算机科学问题。该模型经Massed Compute硬件进行量化优化,兼容llama.cpp、text-generation-webui及KoboldCpp等多种框架,并支持GPU加速。用户能接触到从小尺寸到高保真度的量化模型文件,多样化应用场景支持丰富。资源库还提供未量化的DeepSeek原始fp16模型及适用于GPU推理的AWQ和GPTQ模型。
Qwen2-7B-Instruct-GGUF - 高效量化AI模型 多平台支持 便捷本地部署
GGUFGPU加速GithubHuggingfaceQwen2-7B-Instruct开源项目文本生成模型模型量化
Qwen2-7B-Instruct-GGUF是Qwen2-7B-Instruct模型的GGUF格式量化版本。该模型支持2至8比特量化,可在llama.cpp、LM Studio等多个平台上本地部署。GGUF格式具有高效性能和广泛兼容性,便于在个人设备上进行AI文本生成。该项目为用户提供了多种比特率的量化选项,以适应不同的硬件环境和性能需求。
Llama-3-8B-Instruct-32k-v0.1-GGUF - Llama-3 8B指令模型GGUF版本支持多位量化及广泛应用
GGUFGithubHuggingfaceLlama-3开源AI开源项目模型自然语言处理量化模型
本项目提供Llama-3-8B-Instruct-32k-v0.1模型的GGUF格式文件。GGUF是llama.cpp团队开发的新格式,取代了旧有的GGML。该模型支持2至8位量化,主要用于文本生成。它与多款主流本地运行框架和界面工具兼容,如llama.cpp、LM Studio和text-generation-webui等。这些工具普遍支持GPU加速,使模型能够适应多样化的应用需求。
DeepSeek-Coder-V2-Lite-Base-GGUF - 文本生成量化模型的高效选择方案
DeepSeek-Coder-V2-Lite-BaseGithubHuggingfacegguf格式开源项目文件下载模型量化高质量模型
该项目通过llama.cpp和imatrix技术对文本生成模型进行量化处理,为不同硬件配置提供优化选择。模型文件允许根据RAM和VRAM大小选择最佳方案,从而提升运行效率。K-quants在多数应用中表现理想,而I-quants提供更优性能但在硬件兼容性上有特定要求。项目提供的工具和文档为用户在进行文本生成任务的过程中提供指导,帮助选择兼顾速度与质量的量化模型。
Llama-3.2-1B-Instruct-GGUF - 高效量化的指令微调语言模型GGUF版本
GGUFGithubHuggingfaceLlama大语言模型开源项目文本生成模型量化
该项目提供Llama-3.2-1B-Instruct模型的GGUF格式量化版本,支持2至8位量化。GGUF是llama.cpp团队推出的新格式,取代了旧有的GGML。这一版本兼容多种支持GGUF的工具和库,如llama.cpp、LM Studio等,便于高效本地部署和推理。对于需要在资源受限环境中使用大型语言模型的开发者来说,此项目提供了实用的解决方案。
Llama-3-8B-Instruct-v0.10-GGUF - Llama-3指令模型的GGUF格式量化版本 支持2-8比特精度
GGUF格式GithubHuggingfaceLlama-3开源项目文本生成本地部署模型量化模型
这是Llama-3-8B-Instruct-v0.10模型的GGUF格式量化版本,提供2-bit至8-bit的精度选项。GGUF是llama.cpp团队开发的新格式,取代了GGML,支持多种客户端和库。该项目使用户能够在本地设备上高效运行大型语言模型,适用于文本生成任务。
Open_Gpt4_8x7B_v0.2-GGUF - 提供多格式兼容量化模型,提升推理效率
GGUFGithubHuggingfaceOpen Gpt4 8X7B V0.2rombo dawg开源项目模型模型兼容性量化
此项目提供GGUF格式的多精度量化模型文件,旨在优化CPU和GPU的推理效率。作为GGML的替代,GGUF与多种第三方UI和库兼容,支持多平台AI模型的高效运行。项目包含2至8位量化模型以满足不同精度与内存要求,适合多种场景需求。通过详细的下载指导,用户能快速找到适合的模型文件,并利用llama.cpp、text-generation-webui等高性能运行时实现模型在不同硬件上的高效推理。
DeepSeek-V2.5-GGUF - 大规模语言模型的GGUF量化版本集合适用于本地部署
DeepSeek-V2.5GGUF格式GithubHuggingfaceLLM推理大语言模型开源项目模型量化模型
本项目提供DeepSeek-V2.5模型的多种GGUF量化版本,适合本地部署。量化版本从250GB高精度到61GB轻量,满足不同硬件需求。项目详述各版本特点、大小和用途,并附选择指南。用户可依据硬件条件和性能需求,选择合适的量化版本,实现大规模语言模型的高效本地部署。
Llama-3.2-3B-Instruct-uncensored-GGUF - 3B参数指令微调语言模型的高效GGUF量化版本
GGUFGithubHuggingfaceLlama人工智能开源项目模型量化
Llama-3.2-3B-Instruct-uncensored模型的GGUF量化版本,提供从1.6GB到7.3GB不等的多种量化类型。量化后的模型大小显著减小,便于部署使用,同时尽可能保持原模型性能。项目包含详细的量化版本说明、使用指南和常见问题解答,有助于用户选择适合的版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号