bert_score

bert_score

先进的自然语言生成评估工具

BERTScore是一种创新的自然语言生成评估工具,基于BERT预训练模型的上下文嵌入技术。它通过计算候选句和参考句中单词的余弦相似度,得出精确度、召回率和F1分数。研究表明,BERTScore在句子级和系统级评估中与人工判断具有高度相关性。该项目支持130多种预训练模型,适用于多种语言的文本生成评估。BERTScore提供Python接口和命令行工具,操作简便,是自然语言处理领域的有力辅助工具。

BERTScore自然语言处理文本生成评估预训练模型机器学习Github开源项目

BERTScore

made-with-python arxiv PyPI version bert-score Downloads Downloads License: MIT Code style: black

Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). We now support about 130 models (see this spreadsheet for their correlations with human evaluation). Currently, the best model is microsoft/deberta-xlarge-mnli, please consider using it instead of the default roberta-large in order to have the best correlation with human evaluation.

News:

<!-- - Features to appear in the next version (currently in the master branch): -->
  • Updated to version 0.3.13

    • Fix bug with transformers version > 4.17.0 (#148)
  • Updated to version 0.3.12

    • Having get_idf_dict compatible with DDP (#140)
    • Fix setup bug (#138)
  • Updated to version 0.3.11

    • Support 6 DeBERTa v3 models
    • Support 3 ByT5 models
  • Updated to version 0.3.10

    • Support 8 SimCSE models
    • Fix the support of scibert (to be compatible with transformers >= 4.0.0)
    • Add scripts for reproducing some results in our paper (See this folder)
    • Support fast tokenizers in huggingface transformers with --use_fast_tokenizer. Notably, you will get different scores because of the difference in the tokenizer implementations (#106).
    • Fix non-zero recall problem for empty candidate strings (#107).
    • Add Turkish BERT Supoort (#108).
  • Updated to version 0.3.9

    • Support 3 BigBird models
    • Fix bugs for mBART and T5
    • Support 4 mT5 models as requested (#93)
  • Updated to version 0.3.8

    • Support 53 new pretrained models including BART, mBART, BORT, DeBERTa, T5, BERTweet, MPNet, ConvBERT, SqueezeBERT, SpanBERT, PEGASUS, Longformer, LED, Blendbot, etc. Among them, DeBERTa achives higher correlation with human scores than RoBERTa (our default) on WMT16 dataset. The correlations are presented in this Google sheet.
    • Please consider using --model_type microsoft/deberta-xlarge-mnli or --model_type microsoft/deberta-large-mnli (faster) if you want the scores to correlate better with human scores.
    • Add baseline files for DeBERTa models.
    • Add example code to generate baseline files (please see the details).
  • Updated to version 0.3.7

    • Being compatible with Huggingface's transformers version >=4.0.0. Thanks to public contributers (#84, #85, #86).
  • See #22 if you want to replicate our experiments on the COCO Captioning dataset.

  • For people in China, downloading pre-trained weights can be very slow. We provide copies of a few models on Baidu Pan.

  • Huggingface's datasets library includes BERTScore in their metric collection.

<details><summary>Previous updates</summary><p>
  • Updated to version 0.3.6
    • Support custom baseline files #74
    • The option --rescale-with-baseline is changed to --rescale_with_baseline so that it is consistent with other options.
  • Updated to version 0.3.5
    • Being compatible with Huggingface's transformers >=v3.0.0 and minor fixes (#58, #66, #68)
    • Several improvements related to efficency (#67, #69)
  • Updated to version 0.3.4
    • Compatible with transformers v2.11.0 now (#58)
  • Updated to version 0.3.3
    • Fixing the bug with empty strings issue #47.
    • Supporting 6 ELECTRA models and 24 smaller BERT models.
    • A new Google sheet for keeping the performance (i.e., pearson correlation with human judgment) of different models on WMT16 to-English.
    • Including the script for tuning the best number of layers of an English pre-trained model on WMT16 to-English data (See the details).
  • Updated to version 0.3.2
    • Bug fixed: fixing the bug in v0.3.1 when having multiple reference sentences.
    • Supporting multiple reference sentences with our command line tool.
  • Updated to version 0.3.1
    • A new BERTScorer object that caches the model to avoid re-loading it multiple times. Please see our jupyter notebook example for the usage.
    • Supporting multiple reference sentences for each example. The score function now can take a list of lists of strings as the references and return the score between the candidate sentence and its closest reference sentence.
</p></details>

Please see release logs for older updates.

Authors:

*: Equal Contribution

Overview

BERTScore leverages the pre-trained contextual embeddings from BERT and matches words in candidate and reference sentences by cosine similarity. It has been shown to correlate with human judgment on sentence-level and system-level evaluation. Moreover, BERTScore computes precision, recall, and F1 measure, which can be useful for evaluating different language generation tasks.

For an illustration, BERTScore recall can be computed as

If you find this repo useful, please cite:

@inproceedings{bert-score,
  title={BERTScore: Evaluating Text Generation with BERT},
  author={Tianyi Zhang* and Varsha Kishore* and Felix Wu* and Kilian Q. Weinberger and Yoav Artzi},
  booktitle={International Conference on Learning Representations},
  year={2020},
  url={https://openreview.net/forum?id=SkeHuCVFDr}
}

Installation

  • Python version >= 3.6
  • PyTorch version >= 1.0.0

Install from pypi with pip by

pip install bert-score

Install latest unstable version from the master branch on Github by:

pip install git+https://github.com/Tiiiger/bert_score

Install it from the source by:

git clone https://github.com/Tiiiger/bert_score cd bert_score pip install .

and you may test your installation by:

python -m unittest discover

Usage

Python Function

On a high level, we provide a python function bert_score.score and a python object bert_score.BERTScorer. The function provides all the supported features while the scorer object caches the BERT model to faciliate multiple evaluations. Check our demo to see how to use these two interfaces. Please refer to bert_score/score.py for implementation details.

Running BERTScore can be computationally intensive (because it uses BERT :p). Therefore, a GPU is usually necessary. If you don't have access to a GPU, you can try our demo on Google Colab

Command Line Interface (CLI)

We provide a command line interface (CLI) of BERTScore as well as a python module. For the CLI, you can use it as follows:

  1. To evaluate English text files:

We provide example inputs under ./example.

bert-score -r example/refs.txt -c example/hyps.txt --lang en

You will get the following output at the end:

roberta-large_L17_no-idf_version=0.3.0(hug_trans=2.3.0) P: 0.957378 R: 0.961325 F1: 0.959333

where "roberta-large_L17_no-idf_version=0.3.0(hug_trans=2.3.0)" is the hash code.

Starting from version 0.3.0, we support rescaling the scores with baseline scores

bert-score -r example/refs.txt -c example/hyps.txt --lang en --rescale_with_baseline

You will get:

roberta-large_L17_no-idf_version=0.3.0(hug_trans=2.3.0)-rescaled P: 0.747044 R: 0.770484 F1: 0.759045

This makes the range of the scores larger and more human-readable. Please see this post for details.

When having multiple reference sentences, please use

bert-score -r example/refs.txt example/refs2.txt -c example/hyps.txt --lang en

where the -r argument supports an arbitrary number of reference files. Each reference file should have the same number of lines as your candidate/hypothesis file. The i-th line in each reference file corresponds to the i-th line in the candidate file.

  1. To evaluate text files in other languages:

We currently support the 104 languages in multilingual BERT (full list).

Please specify the two-letter abbreviation of the language. For instance, using --lang zh for Chinese text.

See more options by bert-score -h.

  1. To load your own custom model: Please specify the path to the model and the number of layers to use by --model and --num_layers.
bert-score -r example/refs.txt -c example/hyps.txt --model path_to_my_bert --num_layers 9
  1. To visualize matching scores:
bert-score-show --lang en -r "There are two bananas on the table." -c "On the table are two apples." -f out.png

The figure will be saved to out.png.

  1. If you see the following message while using BERTScore, please ignore it. This is expected.
Some weights of the model checkpoint at roberta-large were not used when initializing RobertaModel: ['lm_head.decoder.weight', 'lm_head.layer_norm.weight', 'lm_head.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.bias', 'lm_head.dense.weight']
- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).

Practical Tips

  • Report the hash code (e.g., roberta-large_L17_no-idf_version=0.3.0(hug_trans=2.3.0)-rescaled) in your paper so that people know what setting you use. This is inspired by sacreBLEU. Changes in huggingface's transformers version may also affect the score (See issue #46).
  • Unlike BERT, RoBERTa uses GPT2-style tokenizer which creates addition " " tokens when there are multiple spaces appearing together. It is recommended to remove addition spaces by sent = re.sub(r' +', ' ', sent) or sent = re.sub(r'\s+', ' ', sent).
  • Using inverse document frequency (idf) on the reference sentences to weigh word importance may correlate better with human judgment. However, when the set of reference sentences become too small, the idf score would become inaccurate/invalid. We now make it optional. To use idf, please set --idf when using the CLI tool or idf=True when calling bert_score.score function.
  • When you are low on GPU memory, consider setting batch_size when calling bert_score.score function.
  • To use a particular model please set -m MODEL_TYPE when using the CLI tool or model_type=MODEL_TYPE when calling bert_score.score function.
  • We tune layer to use based on WMT16 metric evaluation dataset. You may use a different layer by setting -l LAYER or num_layers=LAYER. To tune the best layer for your custom model, please follow the instructions in tune_layers folder.
  • Limitation: Because BERT, RoBERTa, and XLM with learned positional embeddings are pre-trained on sentences with max length 512, BERTScore is undefined between sentences longer than 510 (512 after adding [CLS] and [SEP] tokens). The sentences longer than this will be truncated. Please consider using XLNet which can support much longer inputs.

Default Behavior

Default Model

LanguageModel
enroberta-large
en-sciallenai/scibert_scivocab_uncased
zhbert-base-chinese
trdbmdz/bert-base-turkish-cased
othersbert-base-multilingual-cased

Default Layers

Please see this Google sheet for the supported models and their performance.

Acknowledgement

This repo wouldn't be possible without the awesome bert, fairseq, and

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多