ciencia-da-computacao

ciencia-da-computacao

完整的计算机科学自学课程资源指南

ciencia-da-computacao项目提供系统化的计算机科学自学课程。汇集巴西多所大学优质开放课程资源,内容涵盖编程基础到高级算法。注重理论与实践并重,学习者可灵活安排进度。项目还配有在线学习社区,为自学者提供支持。这是一个全面学习计算机科学核心知识的开放平台。

计算机科学开放教育自学在线课程巴西Github开源项目
<!-- MIT License Copyright (c) 2021 Universidade Brasileira Livre Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --> <p align="center"> <img src="https://uploaddeimagens.com.br/images/003/361/136/original/placeholder.jpg"> </p> <p align="center"> <h3 align="center">Universidade Brasileira Livre</h3> <p align="center"> Um caminho para a educação autodidata em Ciência da Computação! </p> <p align="center"> <a href="https://github.com/sindresorhus/awesome"> <img alt="Awesome" src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg"> </a> <a href="https://github.com/ossu/computer-science"> <img alt="Open Source Society University - Computer Science" src="https://img.shields.io/badge/OSSU-computer--science-blue.svg"> </a> </p> <p align="center"> <a href="https://twitter.com/UBLivre"> <img alt="Twitter" width="25" src="https://github.com/Universidade-Livre/imagens/blob/main/png/twitter.png"> </a> <a href="https://www.linkedin.com/school/universidade-brasileira-livre/"> <img alt="LinkedIn" width="25" src="https://github.com/Universidade-Livre/imagens/blob/main/png/linkedin.png"> </a> <a href="https://www.twitch.tv/universidade_livre"> <img alt="LinkedIn" width="25" src="https://github.com/Universidade-Livre/imagens/blob/main/png/twitch.png"> </a> </p>

Conteúdos

Sumário

O Curso de Ciência da Computação oferecido pela Universidade Livre Brasileira é uma educação completa em Ciência da Computação usando materiais on-line e em Português do Brasil. Este Curso não é pensado para treinamento em tecnologias específicas ou focado em habilidades profissionais direcionadas ao mercado, e sim para aqueles que desejam uma educação própria, com qualidade, fundada nos conceitos fundamentais da computação e é planejada para alunos com disciplina, comprometimento e (o mais importante) bons hábitos de estudo majoritariamente independentes, mas que buscam o suporte de uma comunidade de outros estudantes no Brasil todo.

Este curso contém conteúdos que seriam vistos em um curso de Ciência da Computação organizados de forma estruturada. Os cursos em si são selecionados primariamente do conteúdo aberto de diversas Universidades e Institutos de Educação do Brasil. Entretanto, os cursos presentes na grade seguem os seguintes critérios:

Bases para a criação do Currículo (Guidelines):

Levamos em consideração - apesar de não termos implementado completamente conforme sugerido - os seguintes documentos sobre a formação de um currículo em Ciência da Computação. Continuaremos constantemente trabalhando e aceitando sugestões de melhorias para cada vez mais oferecer uma experiência melhor para todos os estudantes que seguem nosso guia aberto de conteúdos. Além das referências abaixo, também utilizamos como referência as grades curriculares de outras instituições de ensino superior brasileiras.

Os Cursos devem:

  • Ser gratuitos ou de conteúdo que possa ser assistido de forma aberta
  • Possuir método pedagógico
  • Ter reconhecimento de qualidade da Comunidade sobre o tema
  • Estar de acordo com o que se espera do Currículo de Ciências da Computação

Todas as disciplinas possuem uma lista de leituras recomendadas. É de sua responsabilidade escolher a metodologia mais adequada. Note que os livros, em sua maioria, não são gratuitos.

Cursos de qualidade recomendados que não se encaixam na grade serão adicionados em cursos extras. O mesmo ocorrerá quanto aos livros em livros extras.

Todos os cursos podem ser completados de forma gratuita. Porém, alguns cursos têm diplomas, certificados, atividades, ou extras opcionais que são pagos. Observe que o Coursera oferece ajuda financeira.

Os estudantes podem fazer as disciplinas individualmente ou em grupo, seguindo a ordem que estabelecemos ou não, sempre respeitando os pré-requisitos curriculares.

Apenas publique em seu GitHub e espaços públicos os materiais que seu Curso permite que sejam publicados. Nunca desrespeite nenhuma regra do curso em que se matriculou e nunca faça plágios!

Como contribuir

Conseguindo ajuda (Detalhes sobre o FAQ e servidor)

Comunidade

  • Temos um servidor no Discord! Discord Nele, você poderá encontrar e interagir com outros estudantes. Por que não se apresenta lá agora mesmo? Vem para o Discord.
  • Você também pode interagir sobre questões a respeito dos problemas do Curso, propor mudanças de Currículo e outras coisas relacionadas por meio das nossas issues. Sinta-se à vontade para abrir discussões lá.
  • Adicione a Universidade Brasileira Livre no seu perfil do LinkedIn!

Antes de começar

Há tópicos que, apesar de não serem essenciais na formação de Ciência da Computação, podem ser muito úteis na sua jornada de aprendizado. Se desejar, você pode optar por ignorá-los momentaneamente e revisá-los posteriormente.

Técnicas de estudo, organização e aprendizagem

Antes de começar a estudar é importante que você aprenda algumas coisas importantes. Ser autodidata não é sobre aprender sozinho, nem sobre não estar vinculado à uma Instituição de Ensino Superior (IES), mas sobre ser responsável pelo seu próprio ensino e isso é algo que exige saber como estudar, o quanto estudar, e como organizar seus estudos. Para isso, recomendamos os seguintes conteúdos abaixo.

CursoConteúdos
Aprendendo a aprender ¹Memória; Técnicas de estudo; Recursos de estudo.
Como estudar do jeito certoTempo; Técnica; Discussão.

¹ Disponível com legendas em Português.

Git e GitHub

Conhecer ferramentas como o Git o ajudará a organizar seus projetos de estudo. O GitHub - ou outras plataformas como BitBucket ou GitLab - pode ser muito útil para trabalhar remotamente e compartilhar os seus projetos com colegas, além de poder usá-lo como portfólio em futuras oportunidades de trabalho.

CursoConteúdos
Git e Github para IniciantesGit; GitHub; Controle de versão.
Git e GitHubGit; GitHub; Controle de versão.

Currículo

Você pode fazer os cursos na ordem, onde, e como preferir. Este é o maior benefício da liberdade. Entretanto, por fins didáticos e de organização, recomendamos que tente respeitar os pré-requisitos. Você perceberá que não cumprir com estes poderá criar obstáculos em sua jornada.

Dependências entre assuntos

<img src="https://raw.githubusercontent.com/Universidade-Livre/dependencias-aulas/main/grafo_dependencias.svg">

(Clique na imagem para ampliar.)

Obrigatórias

A grade curricular abaixo está dividida em etapas para melhor visualização

1ª Etapa

EtapaAulas em VídeoPré-requisitosLeitura Recomendada
1Circuitos Digitais-Livros sobre Circuitos Digitais
1Matemática Discreta-Livros sobre Matemática Discreta
1Linguagens de Programação-Livros sobre Linguagens de Programação
1Introdução à Ciência da Computação com Python I-Livros sobre Introdução a CC
1Geometria Analítica-Livros sobre Geometria Analítica

2ª Etapa

EtapaAulas em VídeoPré-requisitosLeitura Recomendada
2Cálculo IGeometria AnalíticaLivros de Cálculo I
2Álgebra Linear IGeometria AnalíticaLivros de Álgebra Linear
2Estruturas de DadosMatemática Discreta<br><br>Introdução à Ciência da Computação com Python ILivros de Estruturas de Dados
2Introdução à Ciência da Computação com Python IIIntrodução à Ciência da Computação com Python ILivros de Introdução a Programação
2Laboratório de Programação Orientada a Objetos IIntrodução à Ciência da Computação com Python ILivros sobre Orientação a Objetos

3ª Etapa

EtapaAulas em VídeoPré-requisitosLeitura Recomendada
3Algoritmos em GrafosEstruturas de DadosLivros sobre Algoritmos em Grafos
3Arquitetura de Computadores ICircuitos DigitaisLivros sobre Arquitetura de Computadores I
3Probabilidade e EstatísticaCálculo I

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多