Project Icon

Awesome-Quantization-Papers

深度学习模型量化研究论文综合列表

Awesome-Quantization-Papers是一个全面的深度学习模型量化研究论文列表,涵盖AI会议、期刊和arXiv上的最新成果。项目根据模型结构和应用场景进行分类,重点关注Transformer和CNN在视觉、语言处理等领域的量化方法。通过定期更新,为研究人员提供模型量化领域的最新进展。

Awesome-Quantization-Papers Awesome

This repo contains a comprehensive paper list of Model Quantization for efficient deep learning on AI conferences/journals/arXiv. As a highlight, we categorize the papers in terms of model structures and application scenarios, and label the quantization methods with keywords.

This repo is being actively updated, and contributions in any form to make this list more comprehensive are welcome. Special thanks to collaborator Zhikai Li, and all researchers who have contributed to this repo!

If you find this repo useful, please consider ★STARing and feel free to share it with others!

[Update: Jul, 2024] Add new papers from CVPR-24.
[Update: May, 2024] Add new papers from ICLR-24.
[Update: Apr, 2024] Add new papers from AAAI-24.
[Update: Nov, 2023] Add new papers from NeurIPS-23.
[Update: Oct, 2023] Add new papers from ICCV-23.
[Update: Jul, 2023] Add new papers from AAAI-23 and ICML-23.
[Update: Jun, 2023] Add new arXiv papers uploaded in May 2023, especially the hot LLM quantization field.
[Update: Jun, 2023] Reborn this repo! New style, better experience!


Overview

Keywords: PTQ: post-training quantization | Non-uniform: non-uniform quantization | MP: mixed-precision quantization | Extreme: binary or ternary quantization


Survey

  • "A Survey of Quantization Methods for Efficient Neural Network Inference", Book Chapter: Low-Power Computer Vision, 2021. [paper]
  • "Full Stack Optimization of Transformer Inference: a Survey", arXiv, 2023. [paper]
  • "A White Paper on Neural Network Quantization", arXiv, 2021. [paper]
  • "Binary Neural Networks: A Survey", PR, 2020. [Paper] [Extreme]

Transformer-based Models

Vision Transformers

  • "PTQ4SAM: Post-Training Quantization for Segment Anything", CVPR, 2024. [paper] [PTQ]
  • "Instance-Aware Group Quantization for Vision Transformers", CVPR, 2024. [paper] [PTQ]
  • "Bi-ViT: Pushing the Limit of Vision Transformer Quantization", AAAI, 2024. [paper] [Extreme]
  • "AQ-DETR: Low-Bit Quantized Detection Transformer with Auxiliary Queries", AAAI, 2024. [paper]
  • "LRP-QViT: Mixed-Precision Vision Transformer Quantization via Layer-wise Relevance Propagation", arXiv, 2023. [paper] [PTQ] [MP]
  • "MPTQ-ViT: Mixed-Precision Post-Training Quantization for Vision Transformer", arXiv, 2023. [paper] [PTQ] [MP]
  • "I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference", ICCV, 2023. [paper] [code]
  • "RepQ-ViT: Scale Reparameterization for Post-Training Quantization of Vision Transformers", ICCV, 2023. [paper] [code] [PTQ]
  • "QD-BEV: Quantization-aware View-guided Distillation for Multi-view 3D Object Detection", ICCV, 2023. [paper]
  • "BiViT: Extremely Compressed Binary Vision Transformers", ICCV, 2023. [paper] [Extreme]
  • "Jumping through Local Minima: Quantization in the Loss Landscape of Vision Transformers", ICCV, 2023. [paper]
  • "PackQViT: Faster Sub-8-bit Vision Transformers via Full and Packed Quantization on the Mobile", NeurIPS, 2023. [paper]
  • "Oscillation-free Quantization for Low-bit Vision Transformers", ICML, 2023. [paper] [code]
  • "PSAQ-ViT V2: Towards Accurate and General Data-Free Quantization for Vision Transformers", TNNLS, 2023. [paper]
  • "Variation-aware Vision Transformer Quantization", arXiv, 2023. [paper]
  • "NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers", CVPR, 2023. [paper] [PTQ]
  • "Boost Vision Transformer with GPU-Friendly Sparsity and Quantization", CVPR, 2023. [paper]
  • "Q-DETR: An Efficient Low-Bit Quantized Detection Transformer", CVPR, 2023. [paper]
  • "Output Sensitivity-Aware DETR Quantization", 2023. [paper]
  • "Q-HyViT: Post-Training Quantization for Hybrid Vision Transformer with Bridge Block Reconstruction", arXiv, 2023. [paper] [PTQ]
  • "Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer", NeurIPS, 2022. [paper] [code]
  • "Patch Similarity Aware Data-Free Quantization for Vision Transformers", ECCV, 2022. [paper] [code] [PTQ]
  • "PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization", ECCV, 2022. [paper] [code] [PTQ]
  • "FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer", IJCAI, 2022. [paper] [code] [PTQ]
  • "Q-ViT: Fully Differentiable Quantization for Vision Transformer", arXiv, 2022. [paper]
  • "Post-Training Quantization for Vision Transformer", NeurIPS, 2021. [paper] [PTQ]

[Back to Overview]

Language Transformers

  • "OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models", ICLR, 2024. [paper]"
  • "LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models", ICLR, 2024. [paper]
  • "SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression", ICLR, 2024. [paper] [PTQ]
  • "QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models", ICLR, 2024. [paper]
  • "QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models", ICLR, 2024. [paper] [PTQ]
  • "PB-LLM: Partially Binarized Large Language Models", ICLR, 2024. [paper] [Extreme]
  • "AffineQuant: Affine Transformation Quantization for Large Language Models", ICLR, 2024. [paper]
  • "Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models", ICLR, 2024. [paper]
  • "LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models", ICLR, 2024. [paper]
  • "OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models", AAAI, 2024. [paper]
  • "Norm Tweaking: High-Performance Low-Bit Quantization of Large Language Models", AAAI, 2024. [paper]
  • "Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge", AAAI, 2024. [paper]
  • "Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation", AAAI, 2024. [paper] [PTQ]
  • "What Makes Quantization for Large Language Model Hard? An Empirical Study from the Lens of Perturbation", AAAI, 2024. [paper]
  • "EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs", arXiv, 2024. [paper]
  • "IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact", arXiv, 2024. [paper]
  • "FlattenQuant: Breaking Through the Inference Compute-bound for Large Language Models with Per-tensor Quantization", arXiv, 2024. [paper]
  • "A Comprehensive Evaluation of Quantization Strategies for Large Language Models", arXiv, 2024. [paper]
  • "GPTVQ: The Blessing of Dimensionality for LLM Quantization", arXiv, 2024. [paper]
  • "APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models", arXiv, 2024. [paper]
  • "EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge", arXiv, 2024. [paper]
  • "RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization", arXiv, 2024. [paper]
  • "Accurate LoRA-Finetuning Quantization of LLMs via Information Retention", arXiv, 2024. [paper]
  • "BiLLM: Pushing the Limit of Post-Training Quantization for LLMs", arXiv, 2024. [paper]
  • "KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization", arXiv, 2023. [paper]
  • "Extreme Compression of Large Language Models via Additive Quantization", arXiv, 2023. [paper]
  • "ZeroQuant(4+2): Redefining LLMs Quantization with a New FP6-Centric Strategy for Diverse Generative Tasks", arXiv, 2023. [paper] [PTQ]
  • "CBQ: Cross-Block Quantization for Large Language Models", arXiv, 2023. [paper] [PTQ]
  • "FP8-BERT: Post-Training Quantization for Transformer", arXiv, 2023. [paper] [PTQ]
  • "Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge", arXiv, 2023. [paper]
  • "SmoothQuant+: Accurate and Efficient 4-bit Post-Training WeightQuantization for LLM", arXiv, 2023. [paper] [PTQ]
  • "A Speed Odyssey for Deployable Quantization of LLMs", arXiv, 2023.
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号