Awesome-Quantization-Papers

Awesome-Quantization-Papers

深度学习模型量化研究论文综合列表

Awesome-Quantization-Papers是一个全面的深度学习模型量化研究论文列表,涵盖AI会议、期刊和arXiv上的最新成果。项目根据模型结构和应用场景进行分类,重点关注Transformer和CNN在视觉、语言处理等领域的量化方法。通过定期更新,为研究人员提供模型量化领域的最新进展。

模型量化深度学习神经网络Transformer低比特量化Github开源项目

Awesome-Quantization-Papers Awesome

This repo contains a comprehensive paper list of Model Quantization for efficient deep learning on AI conferences/journals/arXiv. As a highlight, we categorize the papers in terms of model structures and application scenarios, and label the quantization methods with keywords. <br>

This repo is being actively updated, and contributions in any form to make this list more comprehensive are welcome. Special thanks to collaborator Zhikai Li, and all researchers who have contributed to this repo! <br>

If you find this repo useful, please consider ★STARing and feel free to share it with others! <br>

[Update: Jul, 2024] Add new papers from CVPR-24. <br> [Update: May, 2024] Add new papers from ICLR-24. <br> [Update: Apr, 2024] Add new papers from AAAI-24. <br> [Update: Nov, 2023] Add new papers from NeurIPS-23. <br> [Update: Oct, 2023] Add new papers from ICCV-23. <br> [Update: Jul, 2023] Add new papers from AAAI-23 and ICML-23. <br> [Update: Jun, 2023] Add new arXiv papers uploaded in May 2023, especially the hot LLM quantization field. <br> [Update: Jun, 2023] Reborn this repo! New style, better experience! <br>


Overview

Keywords: PTQ: post-training quantization | Non-uniform: non-uniform quantization | MP: mixed-precision quantization | Extreme: binary or ternary quantization


Survey

  • "A Survey of Quantization Methods for Efficient Neural Network Inference", Book Chapter: Low-Power Computer Vision, 2021. [paper]
  • "Full Stack Optimization of Transformer Inference: a Survey", arXiv, 2023. [paper]
  • "A White Paper on Neural Network Quantization", arXiv, 2021. [paper]
  • "Binary Neural Networks: A Survey", PR, 2020. [Paper] [Extreme]

Transformer-based Models

Vision Transformers

  • "PTQ4SAM: Post-Training Quantization for Segment Anything", CVPR, 2024. [paper] [PTQ]
  • "Instance-Aware Group Quantization for Vision Transformers", CVPR, 2024. [paper] [PTQ]
  • "Bi-ViT: Pushing the Limit of Vision Transformer Quantization", AAAI, 2024. [paper] [Extreme]
  • "AQ-DETR: Low-Bit Quantized Detection Transformer with Auxiliary Queries", AAAI, 2024. [paper]
  • "LRP-QViT: Mixed-Precision Vision Transformer Quantization via Layer-wise Relevance Propagation", arXiv, 2023. [paper] [PTQ] [MP]
  • "MPTQ-ViT: Mixed-Precision Post-Training Quantization for Vision Transformer", arXiv, 2023. [paper] [PTQ] [MP]
  • "I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference", ICCV, 2023. [paper] [code]
  • "RepQ-ViT: Scale Reparameterization for Post-Training Quantization of Vision Transformers", ICCV, 2023. [paper] [code] [PTQ]
  • "QD-BEV: Quantization-aware View-guided Distillation for Multi-view 3D Object Detection", ICCV, 2023. [paper]
  • "BiViT: Extremely Compressed Binary Vision Transformers", ICCV, 2023. [paper] [Extreme]
  • "Jumping through Local Minima: Quantization in the Loss Landscape of Vision Transformers", ICCV, 2023. [paper]
  • "PackQViT: Faster Sub-8-bit Vision Transformers via Full and Packed Quantization on the Mobile", NeurIPS, 2023. [paper]
  • "Oscillation-free Quantization for Low-bit Vision Transformers", ICML, 2023. [paper] [code]
  • "PSAQ-ViT V2: Towards Accurate and General Data-Free Quantization for Vision Transformers", TNNLS, 2023. [paper]
  • "Variation-aware Vision Transformer Quantization", arXiv, 2023. [paper]
  • "NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers", CVPR, 2023. [paper] [PTQ]
  • "Boost Vision Transformer with GPU-Friendly Sparsity and Quantization", CVPR, 2023. [paper]
  • "Q-DETR: An Efficient Low-Bit Quantized Detection Transformer", CVPR, 2023. [paper]
  • "Output Sensitivity-Aware DETR Quantization", 2023. [paper]
  • "Q-HyViT: Post-Training Quantization for Hybrid Vision Transformer with Bridge Block Reconstruction", arXiv, 2023. [paper] [PTQ]
  • "Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer", NeurIPS, 2022. [paper] [code]
  • "Patch Similarity Aware Data-Free Quantization for Vision Transformers", ECCV, 2022. [paper] [code] [PTQ]
  • "PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization", ECCV, 2022. [paper] [code] [PTQ]
  • "FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer", IJCAI, 2022. [paper] [code] [PTQ]
  • "Q-ViT: Fully Differentiable Quantization for Vision Transformer", arXiv, 2022. [paper]
  • "Post-Training Quantization for Vision Transformer", NeurIPS, 2021. [paper] [PTQ]

[Back to Overview]

Language Transformers

  • "OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models", ICLR, 2024. [paper]"
  • "LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models", ICLR, 2024. [paper]
  • "SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression", ICLR, 2024. [paper] [PTQ]
  • "QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models", ICLR, 2024. [paper]
  • "QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models", ICLR, 2024. [paper] [PTQ]
  • "PB-LLM: Partially Binarized Large Language Models", ICLR, 2024. [paper] [Extreme]
  • "AffineQuant: Affine Transformation Quantization for Large Language Models", ICLR, 2024. [paper]
  • "Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models", ICLR, 2024. [paper]
  • "LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models", ICLR, 2024. [paper]
  • "OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models", AAAI, 2024. [paper]
  • "Norm Tweaking: High-Performance Low-Bit Quantization of Large Language Models", AAAI, 2024. [paper]
  • "Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge", AAAI, 2024. [paper]
  • "Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation", AAAI, 2024. [paper] [PTQ]
  • "What Makes Quantization for Large Language Model Hard? An Empirical Study from the Lens of Perturbation", AAAI, 2024. [paper]
  • "EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs", arXiv, 2024. [paper]
  • "IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact", arXiv, 2024. [paper]
  • "FlattenQuant: Breaking Through the Inference Compute-bound for Large Language Models with Per-tensor Quantization", arXiv, 2024. [paper]
  • "A Comprehensive Evaluation of Quantization Strategies for Large Language Models", arXiv, 2024. [paper]
  • "GPTVQ: The Blessing of Dimensionality for LLM Quantization", arXiv, 2024. [paper]
  • "APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models", arXiv, 2024. [paper]
  • "EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge", arXiv, 2024. [paper]
  • "RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization", arXiv, 2024. [paper]
  • "Accurate LoRA-Finetuning Quantization of LLMs via Information Retention", arXiv, 2024. [paper]
  • "BiLLM: Pushing the Limit of Post-Training Quantization for LLMs", arXiv, 2024. [paper]
  • "KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization", arXiv, 2023. [paper]
  • "Extreme Compression of Large Language Models via Additive Quantization", arXiv, 2023. [paper]
  • "ZeroQuant(4+2): Redefining LLMs Quantization with a New FP6-Centric Strategy for Diverse Generative Tasks", arXiv, 2023. [paper] [PTQ]
  • "CBQ: Cross-Block Quantization for Large Language Models", arXiv, 2023. [paper] [PTQ]
  • "FP8-BERT: Post-Training Quantization for Transformer", arXiv, 2023. [paper] [PTQ]
  • "Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge", arXiv, 2023. [paper]
  • "SmoothQuant+: Accurate and Efficient 4-bit Post-Training WeightQuantization for LLM", arXiv, 2023. [paper] [PTQ]
  • "A Speed Odyssey for Deployable Quantization of LLMs", arXiv, 2023.

编辑推荐精选

Manus

Manus

全面超越基准的 AI Agent助手

Manus 是一款通用人工智能代理平台,能够将您的创意和想法迅速转化为实际成果。无论是定制旅行规划、深入的数据分析,还是教育支持与商业决策,Manus 都能高效整合信息,提供精准解决方案。它以直观的交互体验和领先的技术,为用户开启了一个智慧驱动、轻松高效的新时代,让每个灵感都能得到完美落地。

飞书知识问答

飞书知识问答

飞书官方推出的AI知识库 上传word pdf即可部署AI私有知识库

基于DeepSeek R1大模型构建的知识管理系统,支持PDF、Word、PPT等常见文档格式解析,实现云端与本地数据的双向同步。系统具备实时网络检索能力,可自动关联外部信息源,通过语义理解技术处理结构化与非结构化数据。免费版本提供基础知识库搭建功能,适用于企业文档管理和个人学习资料整理场景。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

TraeAI IDE协作生产力转型热门AI工具
酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

使用教程AI工具酷表ChatExcelAI智能客服AI营销产品
DeepEP

DeepEP

DeepSeek开源的专家并行通信优化框架

DeepEP是一个专为大规模分布式计算设计的通信库,重点解决专家并行模式中的通信瓶颈问题。其核心架构采用分层拓扑感知技术,能够自动识别节点间物理连接关系,优化数据传输路径。通过实现动态路由选择与负载均衡机制,系统在千卡级计算集群中维持稳定的低延迟特性,同时兼容主流深度学习框架的通信接口。

DeepSeek

DeepSeek

全球领先开源大模型,高效智能助手

DeepSeek是一家幻方量化创办的专注于通用人工智能的中国科技公司,主攻大模型研发与应用。DeepSeek-R1是开源的推理模型,擅长处理复杂任务且可免费商用。

KnowS

KnowS

AI医学搜索引擎 整合4000万+实时更新的全球医学文献

医学领域专用搜索引擎整合4000万+实时更新的全球医学文献,通过自主研发AI模型实现精准知识检索。系统每日更新指南、中英文文献及会议资料,搜索准确率较传统工具提升80%,同时将大模型幻觉率控制在8%以下。支持临床建议生成、文献深度解析、学术报告制作等全流程科研辅助,典型用户反馈显示每周可节省医疗工作者70%时间。

Windsurf Wave 3

Windsurf Wave 3

Windsurf Editor推出第三次重大更新Wave 3

新增模型上下文协议支持与智能编辑功能。本次更新包含五项核心改进:支持接入MCP协议扩展工具生态,Tab键智能跳转提升编码效率,Turbo模式实现自动化终端操作,图片拖拽功能优化多模态交互,以及面向付费用户的个性化图标定制。系统同步集成DeepSeek、Gemini等新模型,并通过信用点数机制实现差异化的资源调配。

AI IDE
腾讯元宝

腾讯元宝

腾讯自研的混元大模型AI助手

腾讯元宝是腾讯基于自研的混元大模型推出的一款多功能AI应用,旨在通过人工智能技术提升用户在写作、绘画、翻译、编程、搜索、阅读总结等多个领域的工作与生活效率。

AI 办公助手AI对话AI助手AI工具腾讯元宝智能体热门
Grok3

Grok3

埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型

Grok3 是由埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型,常被马斯克称为“地球上最聪明的 AI”。它不仅是在前代产品 Grok 1 和 Grok 2 基础上的一次飞跃,还在多个关键技术上实现了创新突破。

下拉加载更多