Project Icon

Blog

全面涵盖深度学习与机器学习的教程项目

本项目汇集了深度学习和机器学习领域的系列教程与代码实现。内容覆盖从基础到高级的多个主题,包括神经网络、CNN、RNN、NLP等深度学习技术,以及特征工程、模型评估、异常检测等机器学习方法。每个主题均配有详细解析和Python代码,为AI学习和实践提供了丰富资源。

"算法进阶"公众号精选文章及项目代码【原创不易,欢迎点亮Star收藏~】


深度学习系列文章

机器学习系列文章

|文章| 代码&资料| :-: | :-: | [《一文全面概览机器学习建模流程(Python代码)》](https://github.com/aialgorithm/Blog/issues/21)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E4%B8%80%E6%96%87%E5%85%A8%E8%A7%88%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%BB%BA%E6%A8%A1%E6%B5%81%E7%A8%8B%EF%BC%88Python%E4%BB%A3%E7%A0%81%EF%BC%89) [《一文全面解决样本不平衡问题》](https://github.com/aialgorithm/Blog/issues/40)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E4%B8%80%E6%96%87%E8%A7%A3%E5%86%B3%E6%A0%B7%E6%9C%AC%E4%B8%8D%E5%9D%87%E8%A1%A1(%E5%85%A8)) [《一文快速了解机器学习的类别(Python代码)》](https://github.com/aialgorithm/Blog/issues/20)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E4%B8%80%E6%96%87%E9%80%9F%E8%A7%88%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%B1%BB%E5%88%AB%EF%BC%88Python%E4%BB%A3%E7%A0%81%EF%BC%89) [《一文揭秘AI核心概念(全) 》](https://github.com/aialgorithm/Blog/issues/62)|[]() [《机器学习数据不满足同分布,怎么处理? 》](https://github.com/aialgorithm/Blog/issues/63)|[]() [《几经沉浮,人工智能(AI)未来何去何从?》](https://github.com/aialgorithm/Blog/issues/16)| [《Python人工智能学习路线(长篇干货) 》](https://github.com/aialgorithm/Blog/issues/22)|[资源](https://github.com/aialgorithm/AiPy) [《Python机器学习入门指南(全)》](https://github.com/aialgorithm/Blog/issues/2)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/Python%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%85%A5%E9%97%A8%E6%8C%87%E5%8D%97demo) [《Python数据分析指南(全)》](https://github.com/aialgorithm/Blog/issues/14)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/Python%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E6%8C%87%E5%8D%97(%E5%85%A8)) [《程序员说模型过拟合时,究竟在说什么?》](https://github.com/aialgorithm/Blog/issues/3)| [《一文总结Python特征生成方法(全)》](https://github.com/aialgorithm/Blog/issues/11)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E4%B8%80%E6%96%87%E5%BD%92%E7%BA%B3Python%E7%89%B9%E5%BE%81%E7%94%9F%E6%88%90%E6%96%B9%E6%B3%95) [《Python特征选择(全)》](https://github.com/aialgorithm/Blog/issues/10)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/Python%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9) [《一文总结AI数据增强方法》](https://github.com/aialgorithm/Blog/issues/13)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E4%B8%80%E6%96%87%E5%BD%92%E7%BA%B3Ai%E6%95%B0%E6%8D%AE%E5%A2%9E%E5%BC%BA%E4%B9%8B%E6%B3%95) [《一文总结AI调参炼丹之法》](https://github.com/aialgorithm/Blog/issues/12)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E4%B8%80%E6%96%87%E5%BD%92%E7%BA%B3Ai%E8%B0%83%E5%8F%82%E7%82%BC%E4%B8%B9%E4%B9%8B%E6%B3%95) [《异常检测算法概览(Python)》](https://github.com/aialgorithm/Blog/issues/18)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95%E9%80%9F%E8%A7%88(Python%E6%BA%90%E7%A0%81)) [《一文涵盖序列预测方法(Python)》](https://github.com/aialgorithm/Blog/issues/7)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E4%B8%80%E6%96%87%E5%9B%8A%E6%8B%AC%E5%BA%8F%E5%88%97%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95(Python)) [《Python半监督算法概览》](https://github.com/aialgorithm/Blog/issues/15)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/Python%E5%8D%8A%E7%9B%91%E7%9D%A3%E7%AE%97%E6%B3%95%E6%A6%82%E8%A7%88) [《一文道尽XGBOOST的前世今生》](https://github.com/aialgorithm/Blog/issues/4)| [《数据挖掘概要(Python)》](https://github.com/aialgorithm/datamining)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/Python%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98%E6%A6%82%E8%A6%81) [《分布式机器学习原理及实战(Pyspark)》](https://github.com/aialgorithm/Blog/issues/17)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E5%88%86%E5%B8%83%E5%BC%8F%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%8E%9F%E7%90%86%E5%8F%8A%E5%AE%9E%E6%88%98(Pyspark)) [《深度解读模型评估方法》](https://github.com/aialgorithm/Blog/issues/32)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E4%B8%80%E6%96%87%E6%B7%B1%E5%BA%A6%E8%A7%A3%E8%AF%BB%E6%A8%A1%E5%9E%8B%E8%AF%84%E4%BC%B0%E6%96%B9%E6%B3%95) [《全面解析并实现逻辑回归(Python)》](https://github.com/aialgorithm/Blog/issues/33)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E5%85%A8%E9%9D%A2%E8%A7%A3%E6%9E%90%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%E6%A8%A1%E5%9E%8B%E5%8F%8A%E5%AE%9E%E7%8E%B0(Python)) [《逻辑回归优化技巧总结(全)》](https://github.com/aialgorithm/Blog/issues/34)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%E4%BC%98%E5%8C%96%E6%8A%80%E5%B7%A7%E6%80%BB%E7%BB%93(%E5%85%A8)) [《全面归纳距离和相似度方法(7种)》](https://github.com/aialgorithm/Blog/issues/36) [《深入理解KNN扩展到ANN)》](https://github.com/aialgorithm/Blog/issues/38)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3KNN%E6%89%A9%E5%B1%95%E5%88%B0ANN) [《从深度学习到深度森林方法(Python)》](https://github.com/aialgorithm/Blog/issues/38)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E6%B7%B1%E5%BA%A6%E6%A3%AE%E6%9E%97%E9%A2%84%E6%B5%8B) [《一篇白话机器学习概念》](https://github.com/aialgorithm/Blog/issues/19) [《全面解析Kmeans聚类(Python)》](https://github.com/aialgorithm/Blog/issues/42)|[代码](https://github.com/aialgorithm/Blog/blob/master/./projects/kmeans++ [《一文通俗讲透树模型》](https://github.com/aialgorithm/Blog/issues/47)|[]() [《Pandas、Numpy性能优化秘籍(全)》](https://github.com/aialgorithm/Blog/issues/48)|[]() [《树模型遇上类别型特征(Python)》](https://github.com/aialgorithm/Blog/issues/49)|[]() [《TensorFlow决策森林构建GBDT(Python)》](https://github.com/aialgorithm/Blog/issues/50)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/TensorFlow%E5%86%B3%E7%AD%96%E6%A3%AE%E6%9E%97%E5%AE%9E%E8%B7%B5) [《深入机器学习的梯度优化》](https://github.com/aialgorithm/Blog/issues/51) [《树+神经网络算法强强联手(Python)》](https://github.com/aialgorithm/Blog/issues/57)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E6%A0%91%2B%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%BC%BA%E5%BC%BA%E8%81%94%E6%89%8B(Python)) [《树模型决策的可解释性与微调(Python)》](https://github.com/aialgorithm/Blog/issues/59)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/树模型决策的可解释性与微调(Python)) [《Machine Learning Model Iteration Methods Summary (Python)》](https://github.com/aialgorithm/Blog/issues/60)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E6%A8%A1%E5%9E%8B%E8%BF%AD%E4%BB%A3%E6%96%B9%E6%B3%95%E6%80%BB%E7%BB%93(%E5%A2%9E%E9%87%8F%E5%AD%A6%E4%B9%A0)) [《Tree Model with Business Prior Constraints (Python)》](https://github.com/aialgorithm/Blog/issues/61)|[代码](https://github.com/aialgorithm/Blog/tree/master/projects/%E5%BC%95%E5%85%A5%E4%B8%9A%E5%8A%A1%E5%85%88%E9%AA%8C%E7%BA%A6%E6%9D%9F%E7%9A%84%E6%A0%91%E6%A8%A1%E5%9E%8B(Python)) [《How to Perform Multi-label Classification? (Python)》](https://github.com/aialgorithm/Blog/issues/64)|[]()

金融科技

其他

【Python、机器学习算法学习资源汇总】

《程序员面试完全指南》

《TCP/IP--图解从URL到网页通信原理》

《技术的未来是什么?(深度总结)》

关注公众号:算法进阶

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号