Online-3D-BPP-DRL

Online-3D-BPP-DRL

深度强化学习解决在线三维装箱问题的高效算法

Online-3D-BPP-DRL项目开发了一种基于约束深度强化学习的在线三维装箱算法。该算法结合深度神经网络和蒙特卡洛树搜索,在优化装箱策略的同时考虑了稳定性约束。算法不仅适用于随机序列,还能解决实际场景中的三维装箱问题。项目提供完整代码实现,包含训练、测试和用户研究功能,为复杂三维装箱问题提供了创新解决方案。

3D装箱问题深度强化学习在线算法约束优化AAAIGithub开源项目

基于约束深度强化学习的在线3D装箱问题

示意图

在线3D装箱问题深度强化学习

项目视频链接:YouTube哔哩哔哩

本仓库包含论文《基于约束深度强化学习的在线3D装箱问题》的实现。

安装

要使该项目正常运行,你需要做两件事:
* 安装'requirements.py'中的Python包(通过'pip install -r requirements.txt')。
*(此代码适用于Python 3.7)

运行

我们在'main.py'中提供了统一的接口。以下是运行我们项目的示例。

训练:

示例:在随机生成的序列上训练新模型。
你可以运行'python main.py --mode train --use-cuda --item-seq rs'。
大约需要一天时间来获得性能令人满意的模型。

你可以运行'python main.py --help'来获取常用参数的一些信息。
我们的项目在'arguments.py'中还有许多其他参数,它们都有默认值。你可以根据需要进行更改。

测试:

示例:
如果你想测试在CUT-2算法生成的序列上训练的模型(详情请参阅我们的文章)。
你可以运行'python main.py --mode test --load-model --use-cuda --data-name cut_2.pt --load-name default_cut_2.pt'。

如果你想在预览设置中查看模型的工作情况,
你可以运行'python main.py --mode test --load-model --use-cuda --data-name cut_2.pt --load-name default_cut_2.pt --preview x',x是预览数量。

我们还提供了用户研究应用、多箱算法和用于比较的MCTS的代码,
请查看'user_study/'、'multi_bin/'、'MCTS/'以了解详情。

提示

* 不同的输入状态大小需要不同类型的CNN进行编码,你可以在./acktr/model.py中调整网络架构以满足你的需求。

* 预测掩码主要用于减少MCTS的计算成本。如果你只需要BPP-1模型,可以在训练过程中用真实掩码替换预测掩码,这样训练会更容易。

* 如果放宽稳定性规则的约束,你可能会得到更好的结果,但在实践中可能会有危险。

* 我们实现的计算开销对网络层的长度敏感,你应该避免在网络架构中出现大型网络层。

* 装箱问题的难度与其物品集有关。训练模型的性能也会受到影响。

声明

赵航和佘琪瑾是本仓库的共同作者。

部分代码修改自开源项目'pytorch-a2c-ppo-acktr-gail'(https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail)。

许可

请注意,此源代码仅供学术使用。未经作者授权,请勿用于商业目的。该方法正在申请专利保护。如需商业使用,请联系徐凯(kevin.kai.xu@gmail.com)。

引用

如果你感兴趣,请引用以下论文:

@inproceedings{DBLP:conf/aaai/ZhaoS0Y021, author = {Hang Zhao and Qijin She and Chenyang Zhu and Yin Yang and Kai Xu}, title = {Online 3D Bin Packing with Constrained Deep Reinforcement Learning}, booktitle = {Thirty-Fifth {AAAI} Conference on Artificial Intelligence, {AAAI} 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, {IAAI} 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2021, Virtual Event, February 2-9, 2021}, pages = {741--749}, publisher = {{AAAI} Press}, year = {2021}, url = {https://ojs.aaai.org/index.php/AAAI/article/view/16155}, timestamp = {Wed, 02 Jun 2021 18:09:11 +0200}, biburl = {https://dblp.org/rec/conf/aaai/ZhaoS0Y021.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多