Project Icon

ml-mgie

基于多模态大语言模型的智能图像编辑技术

MGIE项目通过多模态大语言模型增强指令式图像编辑能力。该技术生成详细指令并提供明确指导,使编辑模型能更准确理解和执行编辑意图。结合端到端训练的视觉想象和图像操作,MGIE为图像编辑提供更灵活精确的控制方法。

通过多模态大语言模型引导基于指令的图像编辑

本仓库包含了论文《通过多模态大语言模型引导基于指令的图像编辑》(ICLR'24 Spotlight)的代码

概述

MGIE 是以下论文的实现:
"通过多模态大语言模型引导基于指令的图像编辑"
傅祖睿胡文泽杜显志王扬杨寅飞甘哲
发表于2024年国际学习表示会议(ICLR

基于指令的图像编辑通过自然命令提高了图像操作的可控性和灵活性,无需详细描述或区域掩码。然而,人类指令有时过于简短,当前方法难以捕捉和遵循。多模态大语言模型(MLLMs)在跨模态理解和视觉感知响应生成方面展现了令人瞩目的能力。我们研究了MLLMs如何促进编辑指令,并提出了MLLM引导的图像编辑(MGIE)。MGIE学习推导出富有表现力的指令并提供明确指导。编辑模型通过端到端训练同时捕捉这种视觉想象并执行操作

环境要求

conda create -n mgie python=3.10 -y
conda activate mgie
conda update -n base -c defaults conda setuptools -y
conda install -c conda-forge git git-lfs ffmpeg vim htop ninja gpustat -y
conda clean -a -y

pip install -U pip cmake cython==0.29.36 pydantic==1.10 numpy
pip install -U gdown pydrive2 wget jupyter jupyterlab jupyterthemes ipython
pip install -U sentencepiece transformers diffusers tokenizers datasets gradio==3.37 accelerate evaluate git+https://github.com/openai/CLIP.git
pip install -U https://download.pytorch.org/whl/cu113/torch-1.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchvision-0.13.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchaudio-0.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl
pip install -U deepspeed

# 克隆此仓库
cd ml-mgie
git submodule update --init --recursive
cd LLaVA
pip install -e .
pip install -U https://download.pytorch.org/whl/cu113/torch-1.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchvision-0.13.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchaudio-0.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl
pip install -U ninja flash-attn==1.0.2
pip install -U pydrive2 gdown wget

cd ..
cp mgie_llava.py LLaVA/llava/model/llava.py
cp mgie_train.py LLaVA/llava/train/train.py

快速开始

将官方LLaVA-7B放在_ckpt/LLaVA-7B-v1中,并下载预训练的ckpt(在IPr2Pr + MagicBrush上训练)放在_ckpt/mgie_7b

demo.ipynb

注意:附加权重差异中的Apple权利特此根据CC-BY-NC许可证授权。Apple不对LLaMa或任何其他第三方软件作出任何陈述,这些软件受其自身条款约束。

使用方法

数据

下载CLIP过滤的IPr2Pr并在_data中处理(包括总结的富有表现力的指令)

process_data.ipynb

这里有示例帮助准备数据

训练

Vicuna-7BLLaVA-7B放在_ckpt/vicuna-7b-v1.1_ckpt/LLaVA-7B-v1

WANDB_DISABLED='true' torchrun --nnodes=1 --nproc_per_node=8 --master_port=7122 LLaVA/llava/train/train_mem.py --model_name_or_path ./_ckpt/vicuna-7b-v1.1 --version v1 --vision_tower openai/clip-vit-large-patch14 --mm_vision_select_layer -2 --mm_use_im_start_end True --bf16 True --output_dir _snapshot/mgie --num_train_epochs 40 --per_device_train_batch_size 4 --per_device_eval_batch_size 2 --dataloader_num_workers 2 --gradient_accumulation_steps 1 --evaluation_strategy 'no' --save_strategy 'steps' --save_steps 2000 --save_total_limit 10 --learning_rate 5e-4 --weight_decay 0. --warmup_ratio 0.03 --lr_scheduler_type 'cosine' --logging_steps 1 --tf32 True --model_max_length 512 --gradient_checkpointing True --lazy_preprocess True

推理

_ckpt/mgie_7b中提取训练好的ckpt

extract_ckpt.ipynb

运行我们的演示

demo.ipynb

引用

@inproceedings{fu2024mgie,
  author = {Tsu-Jui Fu and Wenze Hu and Xianzhi Du and William Yang Wang and Yinfei Yang, and Zhe Gan}, 
  title = {{通过多模态大语言模型引导基于指令的图像编辑}}, 
  booktitle = {国际学习表示会议 (ICLR)}, 
  year = {2024} 
}

致谢

  • LLaVA:我们基于的代码库
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号