ChatGPT-RetrievalQA

ChatGPT-RetrievalQA

使用ChatGPT和人类响应数据训练和评估问答检索模型

提供ChatGPT与人类响应的数据集,以训练和评估问答检索模型。数据集基于HC3公开数据,分析ChatGPT和传统检索模型在回答真实性和可靠性上的差异。项目由阿姆斯特丹大学支持,数据格式兼容MSMarco,便于研究人员使用现有脚本。

ChatGPT信息检索训练数据数据集答案排序Github开源项目

ChatGPT-RetrievalQA: ChatGPT的回复能否作为问答检索模型的训练数据?

论文"Generating Synthetic Documents for Cross-Encoder Re-Rankers: A Comparative Study of ChatGPT and Human Experts"和论文"A Test Collection of Synthetic Documents for Training Rankers: ChatGPT vs. Human Experts"的存储库。一个用于训练和评估问答(QA)检索模型的数据集,通过ChatGPT的回复训练/评估,或在真实人类回复上进行训练/评估。

如果使用此数据集,请使用以下bibtex参考文献:

@InProceedings{askari2023chatgptcikm2023, author = {Askari, Arian and Aliannejadi, Mohammad and Kanoulas, Evangelos and Verberne, Suzan}, titlE = {A Test Collection of Synthetic Documents for Training Rankers: ChatGPT vs. Human Experts}, year = 2023, booktitle = {The 32nd ACM International Conference on Information and Knowledge Management (CIKM 2023)}, } @InProceedings{askari2023genirsigir2023, author = {Askari, Arian and Aliannejadi, Mohammad and Kanoulas, Evangelos and Verberne, Suzan}, title = {Generating Synthetic Documents for Cross-Encoder Re-Rankers: A Comparative Study of ChatGPT and Human Experts}, year = 2023, booktitle = {Generative Information Retrieval workshop at ACM SIGIR 2023}, }

这项工作是在教授Mohammad AliannejadiEvangelos KanoulasSuzan Verberne的监督下完成的,我的访问研究在阿姆斯特丹大学信息检索实验室的期间进行的(IRLab@UvA)。

我们的工作总结

给定一组问题及相应的ChatGPT和人类的回答,我们分别制作了两个集合:一个是ChatGPT,一个是人类。通过这样做,我们从信息检索的角度提供了多个分析机会,评估ChatGPT回复对训练检索模型的有用性。我们为端到端检索和重新排序设置提供了数据集。为了给其他分析提供灵活性,我们将所有文件分别组织为ChatGPT和人类的回复。

为什么在ChatGPT可以生成答案的情况下依赖检索?

虽然ChatGPT是一种强大的语言模型,能够生成令人印象深刻的答案,但其并非没有错误或虚假的信息。此外,ChatGPT生成的信息来源并不透明,通常即使信息正确也没有来源。在法律、医学、科学等专业领域,信任度和责任性至关重要,这会成为更大的问题。与生成模型不同,检索模型从来源中检索实际(真实)信息,搜索引擎提供每个检索项的来源。这就是为什么在即使ChatGPT存在的情况下,信息检索仍然是一个重要的应用,特别是在可靠性至关重要的情况下。

答案排名数据集

该数据集基于公开的HC3数据集,尽管我们的实验 setup 和评估将有所不同。我们将数据分为训练集、验证集和测试集,以便在ChatGPT或人类答案上训练/评估答案检索模型。我们将人类/ChatGPT的实际回复存储为相关答案。对于训练,一组随机回答可用作非相关答案。在我们的主要实验中,我们在ChatGPT的回应上进行训练,并在人的回应上进行评估。我们以类似于MSMarco数据集的格式发布ChatGPT-RetrievalQA数据集,这是一个广受训练检索模型欢迎的数据集。因此,每个人都可以在我们的数据上重新使用他们的MSMarco数据集脚本。

描述文件名文件大小记录数量格式
Collection-H (H: 人类回复)collection_h.tsv38.6 MB58,546tsv: pid, passage
Collection-C (C: ChatGPT回复)collection_c.tsv26.1 MB26,882tsv: pid, passage
Queriesqueries.tsv4 MB24,322tsv: qid, query
Qrels-H Train (人类回复的训练集Qrels)qrels_h_train.tsv724 KB40,406TREC qrels格式
Qrels-H Validation (人类回复的验证集Qrels)qrels_h_valid.tsv29 KB1,460TREC qrels格式
Qrels-H Test (人类回复的测试集Qrels)qrels_h_test.tsv326 KB16,680TREC qrels格式
Qrels-C Train (ChatGPT回复的训练集Qrels)qrels_c_train.tsv339 KB18,452TREC qrels格式
Qrels-C Validation (ChatGPT回复的验证集Qrels)qrels_c_valid.tsv13 KB672TREC qrels格式
Qrels-C Test (ChatGPT回复的测试集Qrels)qrels_c_test.tsv152 KB7,756TREC qrels格式
Queries, Answers, and Relevance Labels (查询,答案和相关性标签)collectionandqueries.zip23.9 MB866,504
Train-H Triples (训练集H三元组)train_h_triples.tsv58.68 GB40,641,772tsv: query, positive passage, negative passage
Validation-H Triple (验证集H三元组)valid_h_triples.tsv2.02 GB1,468,526tsv: query, positive passage, negative passage
Train-H Triples QID PID Format (训练集H三元组QID PID格式)train_h_qidpidtriples.tsv921.7 MB40,641,772tsv: qid, positive pid, negative pid
Validation-H Triples QID PID Format (验证集H三元组QID PID格式)valid_h_qidpidtriples.tsv35.6 MB1,468,526tsv: qid, positive pid, negative pid
Train-C Triples (训练集C三元组)train_c_triples.tsv37.4 GB18,473,122tsv: query, positive passage, negative passage
Validation-C Triple (验证集C三元组)valid_c_triples.tsv1.32 GB672,659tsv: query, positive passage, negative passage
Train-C Triples QID PID Format (训练集C三元组QID PID格式)train_c_qidpidtriples.tsv429.6 MB18,473,122tsv: qid, positive pid, negative pid
Validation-C Triples QID PID Format (验证集C三元组QID PID格式)valid_c_qidpidtriples.tsv16.4 MB672,659tsv: qid, positive pid, negative pid

我们发布了三元组格式的训练和验证数据以便于训练。用于训练ChatGPT回复的三元组文件是:"train_c_triples.tsv" 和 "valid_c_triples.tsv"。此外,我们发布了基于人类回复的三元组文件,便于大家比较基于ChatGPT和人类回复的训练效果(文件:"train_h_triples.tsv" 和 "valid_h_triples.tsv")。给定每个查询和正面答案,随机抽取了1000个负面答案。

答案重新排序数据集

描述文件名文件大小记录数量
Top-H 1000 Train (Top-H 1000训练)top_1000_h_train.run646.6 MB16,774,122
Top-H 1000 Validation (Top-H 1000验证)top_1000_h_valid.run23.7 MB605,956
Top-H 1000 Test (Top-H 1000测试)top_1000_h_test.run270.6 MB692,0845
Top-C 1000 Train (Top-C 1000训练)top_1000_c_train.run646.6 MB16,768,032
Top-C 1000 Validation (Top-C 1000验证)top_1000_c_valid.run23.7 MB605,793
Top-C 1000 Test (Top-C 1000测试)top_1000_c_test.run271.1 MB6,917,616

答案重新排序数据集的运行文件格式是TREC运行格式。

注意: 我们在Elasticsearch中使用BM25作为第一阶段排序器,以便在给定问题(即查询)的情况下对搜索到的前1000个文档进行排名。然而,对于某些查询,检索到的文档少于1000个,这意味着在整个集合中,至少有一个词与查询匹配的文档少于1000个。

分析BM25在人工/ChatGPT回复上的效果

敬请期待。 ChatGPT-RetrievalQA-Evlaution

BERT 在 Qrels-H 测试中的重新排名效果

我们在由 ChatGPT 生成的回复上训练 BERT(使用 queries.tsv、collection_c.tsv、train_c_triples.tsv、valid_c_triples.tsv、qrels_c_train.tsv 和 qrels_c_valid.tsv 文件)。接下来,我们评估 BERT 作为答案重新排名模型在人类回复上的效果(使用 queries.tsv、collection_h.tsv、top_1000_c_test.run 和 qrels_h_test.tsv)。通过这样做,我们回答以下问题:“在评估人类回复时,一个在 ChatGPT 回复上训练的答案检索模型的有效性如何?”

敬请期待。

其他大型语言模型(LLMs)生成的回复集合

敬请期待。

创建数据集的代码

ChatGPT-RetrievalQA-Dataset-Creator

数据集来源和版权

特别感谢 HC3 团队 发布的 Human ChatGPT Comparison Corpus (HC3) 语料库。我们的数据是基于他们的数据集创建的,并遵循他们的许可。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多