Project Icon

dicoogle

革新医学影像数据管理的开源PACS归档软件

Dicoogle是一款开源、跨平台的PACS归档软件,采用灵活的索引和检索机制替代传统中央数据库。它能自动处理医学影像元数据,包括私有DICOM标签,无需重新设计。软件提供强大的插件系统,支持功能扩展,广泛应用于医学影像教学、研究和临床领域。

Java CI with Maven Build Webapp with Node.js

This is the development branch for Dicoogle 3. See here for the development line of Dicoogle 2, which is being phased out.

Dicoogle is an extensible, platform-independent and open-source PACS archive software that replaces the traditional centralized database with a more agile indexing and retrieval mechanism. It was designed to support automatic extraction, indexing and storage of all meta-data detected in medical images, including private DICOM attribute tags, without re-engineering or reconfiguration requirements.

The architecture of Dicoogle is described in the following articles:

  • Lebre, R., Pinho, E., Jesus, R. , Silva, L.A.B., Costa, C. Dicoogle Open Source: The Establishment of a New Paradigm in Medical Imaging. 2022 Journal of Medical Systems 46: 77. doi:10.1007/s10916-022-01867-3 [link]
  • Lebre, R., Pinho, E., Silva, J.M., Costa, C. Dicoogle Framework for Medical Imaging Teaching and Research. 2020 IEEE Symposium on Computers and Communications (ISCC) [link]
  • Valente, F., Silva, L.A.B., Godinho, T.M., Costa, C. Anatomy of an Extensible Open Source PACS. J Digit Imaging (2016) 29: 284. doi:10.1007/s10278-015-9834-0 [link]

Our official website is at https://www.dicoogle.com. A few essential plugins for Dicoogle are available to download there, as well as a built jar of the Dicoogle platform. To learn how to use Dicoogle, please see our Learning Pack. To build the core platform yourself, please see the section on Building Dicoogle below. The learning pack also has a page on Building Dicoogle.

Brief Documentation

Setup Dicoogle Platform Environment

  1. Copy dicoogle.jar to the installation folder. For example DicoogleDir/

  2. Create the Folder DicoogleDir/Plugins.

    This folder will hold the plugins used by our instance of the Dicoogle Platform.

  3. Next, copy the desired plugins into the DicoogleDir/Plugins Folder.

    The typical setup of Dicoogle involves the deployment of an Indexing and Query Plugin. We supply an implementation of such plugin based in Apache Lucene.

  4. Run Dicoogle.

    Dicoogle may be run as a server: java -jar dicoogle.jar -s

    To load the server and open Dicoogle's user interface with the default browser: java -jar dicoogle.jar

Available Plugins

We provide a few plugins at the official website, in the Downloads page.

  • Lucene Index/Query Plugin - (lucene.jar)

    Plugin Based on Apache Lucene to support indexing and querying of DICOM meta-data. With this plugin set, it is possible to index nearly meta-data and perform free text, keyword-based, and range-based queries.

  • File Storage Plugin - (filestorage.jar)

    Plugin used for the storage of DICOM Files. This plugin is necessary in order to use Dicoogle as a complete DICOM Storage Provider. The core platform provides a fallback implementation which supports reading (but not storing) files from the local file system.

    For storage purposes, our file storage plugin maps the DICOM hierarchical organization (Patient->Study->Series->Image) into a directory tree in the file system. Every object in the Dicoogle Platform may be traced back to its storage location by a URI, similar to file:/tmp/file. In order to support multiple providers, every Storage plugin must define a unique scheme, which maps to the protocol used to store and retrieve content.

    • Settings

      • root-dir: is the root directory where DICOM Files will be stored
      • scheme: Specifies the scheme/protocol of the file plugin. This value is arbitrary, but must be unique among all installed plugins. As such, avoid using well known protocol names such as http or file.

Configuring Plugins

Plugin configurations are accessible via "/DicoogleDir/Plugins/settings/PluginName.xml", where PluginName stands for the name of the plugin. Upon initialization, if no configurations file is supplied, a new one with the default values is created.

Using the Web Application

  • Configuring Services

    In the Management Page, Services and Plugins settings, it is possible to start and/or stop currently running services in real time. Moreover, some configurations like the DICOM service ports may be set.

  • Index a Directory

    Indexing a directory is done simply by accessing the Indexer page, on the side bar. In this page, one can select a root directory to index. The path is a URI defined according to the storage provider, and defaults to the file scheme.

    In the Management pange, one may also enable the Dicoogle Directory Watcher, which creates a daemon that listens for new files in the root directory. After selecting the configurations, the "Apply Settings" button must be pressed. When the right settings are saved, the Start buttons fires the indexing process. Please note that this process may take considerable time to complete.

  • Using the Search Interface

    The search page enables users to execute queries over the indexed meta-data. The query syntax is similar to the Lucene's Tag:Value query format, but free text searches are also supported. For inexperienced users, an advanced input module may also be used.

    In the search interface, it is also possible to select which providers to query. Query providers are actually Query Plugins, that are installed either in the local instance of Dicoogle, or in remote instances if the platform is using the WAN plugin. Therefore, be careful and select exactly which providers you want to query, in order to retrieve more accurate and faster results.

  • Export Results

    After running a query, the result browser shows up, giving the user an intuitive hierarchical view of the results. On this page, there is also an Export button, which is used in order to export the query results into a CSV file. When the export button is clicked, the user has to select which tags (s)he wants to export in the CSV file. This selection is heavily assisted by the interface, on which the user may type an incomplete tag and have presented the available candidates that match the inserted term. Moreover, the text box allows users to copy a list of tags directly from another CSV file, enabling an easier generation of reports.

Using the Web Services

Let us assume that the Web Services for our instance of Dicoogle are running in https://demo.dicoogle.com/

  • Searching Dicoogle provides a flexible web service for querying, under the /search endpoint.

    • Search by Date Range, Access images in date 2005/03/29

      Query: "StudyDate:[20050329 TO 20050329]"

      URL: https://demo.dicoogle.com/search?query=StudyDate:[20050329%20TO%2020050329]

    • Access images in date 2005/03/29 and CT (Computer Tomography) modality

      Query: "Modality:CT AND StudyDate:[20050329 TO 20050329]"

      URL: https://demo.dicoogle.com/search?query=Modality:CT%20AND%20StudyDate:[20050329%20TO%2020050329]

    • Free text search, looking for CT keyword

      Query: CT

      URL: https://demo.dicoogle.com/search?query=CT

  • Access the list of attributes of an image (by SOPInstanceUID)

    URL: https://demo.dicoogle.com/dump?uid=1.3.12.2.1107.5.1.4.54023.30000005032914013107800000965

  • Get a DICOM File

    URL: https://demo.dicoogle.com/legacy/file?uid=1.3.12.2.1107.5.1.4.54023.30000005032914013107800000965

  • Return documents from particular query providers (useful for queries that do not follow the typical Lucene query format)

    URL: https://demo.dicoogle.com/search?query=Modality:NM&provider=lucene&provider=mongo

    Parameters:

    • query : Query String
    • provider: name of the query providers - multiple - optional
      • all: default - asks all available providers.
      • provider name: name of the provider, e.g. lucene.
  • Force Dicoogle to index a given Resource. (useful when conventional notification systems (DICOM Services, DirectoryMonitoring, Human Interface) fail to start the index procedure)

    URL: https://demo.dicoogle.com/management/tasks/index?uri=file:/tmp/dataset-ieeta/

    • Method: POST
    • Parameters:
      • uri: The root identifier of the resources that will be indexed. Please note that Dicoogle will fetch these resources from a storage plugin. Therefore, a plugin capable of handling these resources must be enabled. The provider is identified by the URI's scheme.

A live demo was deployed at the given URL. Feel free to experiment with these services.

We also have programmatic APIs for interfacing with Dicoogle in JavaScript, Java, and Python.

Create your own Plugins

In order to integrate new functionalities in Dicoogle, you may create your own plugin set. A plugin set comprises plugins that are developed with the intent of supporting a given feature, and are packaged in a single jar file for deployment. See the learning pack on Plugin Development for our guide (we also have a wiki page), and our sample plugin project for a base project from which you can start making your own plugins.

Building Dicoogle

Before building, please make sure that your system contains the following tools:

  • Java JDK, either Oracle or OpenJDK (at least version 8);
  • Maven 3;
  1. Retrieve the full source code from this repository: git clone https://github.com/bioinformatics-ua/dicoogle.git
  2. Navigate to the project's base directory, and build the parent Maven project by calling mvn install.
    • Note: this will build the web application using an embedded version of Node.js and npm. To skip building the webapp: mvn install -Dskip.installnodenpm -Dskip.npm
  3. The resulting jar file can be found in "./dicoogle/target".

Contributing

The open source project is maintained by UA.PT Bioinformatics and BMD Software. Your contributions to the software are also welcome. Dicoogle is sought to be useful for R&D and the industry alike. You may find our Development Guidelines in the wiki. Issues containing the easy label should be the most suitable for first open source contributions. For tech support, please prefer contacting the maintainers instead of creating an issue.

Support and consulting

BMD Software

Please contact BMD Software for professional support and consulting services.

Project committers

Maintainers:

  • Luís Bastião (BMD Software - development leader) - @bastiao
  • Eduardo Pinho (BMD Software - co-leader) - @Enet4
  • Rui Lebre (UA.PT Bioinformatics - core, elearning) - @rlebre

Contributors:

Past developers:

  • Carlos Ferreira
  • David Campos
  • Eriksson Monteiro
  • Frederico Silva
  • Frederico Valente
  • Jorge Miguel Silva
  • Leonardo Oliveira
  • Luis Ribeiro
  • Renato Pinho
  • Samuel Campos
  • Tiago Godinho

Project leaders

  • Carlos Costa and José Luis Oliveira (UA.PT Bioinformatics, scientific advisors)
  • Luís Bastião (BMD software -
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号