Project Icon

dalle-mini

开源文本生成图像AI模型

DALL·E Mini是一个开源的文本生成图像AI项目,基于OpenAI的DALL·E模型。该项目能根据文本描述生成相应图像,用户可通过craiyon.com体验。DALL·E Mini提供了技术报告、开发文档和训练代码,便于研究人员进行深入研究和二次开发。项目由多位贡献者合作完成,获得了Google TPU Research Cloud等多方支持。

DALL·E Mini

如何使用?

你可以在 🖍️ craiyon 上使用该模型

它是如何工作的?

请参考我们的报告:

开发

安装依赖

仅用于推理,请使用 pip install dalle-mini

对于开发,克隆仓库并使用 pip install -e ".[dev]"。 在提交PR之前,请使用 make style 检查代码风格。

你可以通过我们的推理管道笔记本逐步试验管道

在Colab中打开

DALL·E mini的训练

使用 tools/train/train.py

如果需要进行超参数搜索,你还可以调整扫描配置文件

常见问题

在哪里可以找到最新的模型?

训练好的模型位于 🤗 Model Hub:

标志来自哪里?

"鳄梨形状的扶手椅"是OpenAI发布DALL·E时用来展示模型能力的。成功预测这个提示对我们来说是一个重要的里程碑。

贡献

加入 LAION Discord 社区。 我们欢迎任何形式的贡献,无论是报告问题、提出修复/改进建议,还是用有趣的提示测试模型!

你也可以使用社区中这些优秀的项目:

致谢

作者与贡献者

DALL·E mini 最初由以下人员开发:

非常感谢帮助改进它的人们:

引用 DALL·E mini

如果你在研究中发现 DALL·E mini 有用或想要引用它,请使用以下 BibTeX 条目。

@misc{Dayma_DALL·E_Mini_2021,
      author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata},
      doi = {10.5281/zenodo.5146400},
      month = {7},
      title = {DALL·E Mini},
      url = {https://github.com/borisdayma/dalle-mini},
      year = {2021}
}

参考文献

原始 DALL·E 来自 "Zero-Shot Text-to-Image Generation",图像量化来自 "Learning Transferable Visual Models From Natural Language Supervision"。

图像编码器来自 "Taming Transformers for High-Resolution Image Synthesis"。

基于 "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension" 的序列到序列模型,实现了几个变体:

主要优化器(分布式Shampoo)来自 "Scalable Second Order Optimization for Deep Learning"。

引用

@misc{
  title={Zero-Shot Text-to-Image Generation}, 
  author={Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
  year={2021},
  eprint={2102.12092},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
@misc{
  title={从自然语言监督中学习可迁移的视觉模型},
  author={Alec Radford 和 Jong Wook Kim 和 Chris Hallacy 和 Aditya Ramesh 和 Gabriel Goh 和 Sandhini Agarwal 和 Girish Sastry 和 Amanda Askell 和 Pamela Mishkin 和 Jack Clark 和 Gretchen Krueger 和 Ilya Sutskever},
  year={2021},
  eprint={2103.00020},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
@misc{
  title={驯服 Transformer 用于高分辨率图像合成},
  author={Patrick Esser 和 Robin Rombach 和 Björn Ommer},
  year={2021},
  eprint={2012.09841},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
@misc{
  title={BART: 用于自然语言生成、翻译和理解的去噪序列到序列预训练},
  author={Mike Lewis 和 Yinhan Liu 和 Naman Goyal 和 Marjan Ghazvininejad 和 Abdelrahman Mohamed 和 Omer Levy 和 Ves Stoyanov 和 Luke Zettlemoyer},
  year={2019},
  eprint={1910.13461},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
@misc{
  title={深度学习的可扩展二阶优化},
  author={Rohan Anil 和 Vineet Gupta 和 Tomer Koren 和 Kevin Regan 和 Yoram Singer},
  year={2021},
  eprint={2002.09018},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}
@misc{
  title={GLU 变体改进 Transformer},
  author={Noam Shazeer},
  year={2020},
  url={https://arxiv.org/abs/2002.05202}    
}
 @misc{
  title={DeepNet: 将 Transformer 扩展到 1,000 层},
  author={王宏宇 和 马树铭 和 董黎 和 黄少汉 和 张东东 和 魏福},
  year={2022},
  eprint={2203.00555}
  archivePrefix={arXiv},
  primaryClass={cs.LG}
} 
@misc{
  title={NormFormer: 通过额外归一化改进 Transformer 预训练},
  author={Sam Shleifer 和 Jason Weston 和 Myle Ott},
  year={2021},
  eprint={2110.09456},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
@inproceedings{
  title={Swin Transformer V2: 扩展容量和分辨率},
  author={刘泽 和 胡翰 和 林雨桐 和 姚祝良 和 谢震达 和 魏毅轩 和 宁佳 和 曹越 和 张政 和 董黎 和 魏福 和 郭百宁},
  booktitle={国际计算机视觉与模式识别会议 (CVPR)},
  year={2022}
}
@misc{
  title = {CogView: 通过 Transformer 掌握文本到图像生成},
  author = {丁明 和 杨卓艺 和 洪文怡 和 郑文迪 和 周畅 和 尹达 和 林俊阳 和 邹旭 和 邵周 和 杨宏侠 和 唐杰},
  year = {2021},
  eprint = {2105.13290},
  archivePrefix = {arXiv},
  primaryClass = {cs.CV}
}
@misc{
  title = {均方根层归一化},
  author = {张彪 和 Rico Sennrich},
  year = {2019},
  eprint = {1910.07467},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG}
}
@misc{
  title = {Sinkformers: 具有双重随机注意力的 Transformer},
  url = {https://arxiv.org/abs/2110.11773},
  author = {Sander, Michael E. 和 Ablin, Pierre 和 Blondel, Mathieu 和 Peyré, Gabriel},
  publisher = {arXiv},
  year = {2021},
}
@misc{
  title = {深度网络中的平滑激活和可重复性},
  url = {https://arxiv.org/abs/2010.09931},
  author = {Shamir, Gil I. 和 Lin, Dong 和 Coviello, Lorenzo},
  publisher = {arXiv},
  year = {2020},
}
@misc{
  title = {基础 Transformer},
  url = {https://arxiv.org/abs/2210.06423},
  author = {王宏宇 和 马树铭 和 黄少汉 和 董黎 和 王文会 和 彭志良 和 吴昱 和 Bajaj, Payal 和 Singhal, Saksham 和 Benhaim, Alon 和 Patra, Barun 和 刘准 和 Chaudhary, Vishrav 和 宋霞 和 魏福},
  publisher = {arXiv},
  year = {2022},
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号