modeltime

modeltime

R语言时间序列预测框架 整合机器学习与传统方法

modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。

modeltime时间序列预测R语言机器学习工作流Github开源项目

modeltime

<!-- badges: start -->

CRAN_Status_Badge Codecov 测试覆盖率 R-CMD-check

<!-- badges: end -->

R 中进行整洁的时间序列预测。

使命:我们的首要目标是使高性能时间序列分析变得更简单、更快速、更具可扩展性。Modeltime 通过提供简单易用的建模和预测时间序列的基础设施来实现这一目标。

快速入门视频

对于喜欢视频教程的人来说,我们有一个11分钟的YouTube视频,带你了解Modeltime工作流程。

<a href="https://www.youtube.com/watch?v=-bCelif-ENY" target="_blank"> <p style="text-align:center;"> <img src= "vignettes/modeltime-video.jpg" alt="Modeltime入门" width="60%"/> </p> <p style="text-align:center"> (点击在YouTube上观看) </p> </a>

教程

  • Modeltime入门:使用 modeltime 进行预测的6步流程介绍

  • Modeltime文档:学习如何使用 modeltime查找 Modeltime模型,以及扩展 modeltime,以便在 Modeltime工作流程 中使用新算法。

安装

CRAN版本:

install.packages("modeltime", dependencies = TRUE)

开发版本:

remotes::install_github("business-science/modeltime", dependencies = TRUE)

为什么选择modeltime?

Modeltime在一个框架中解锁时间序列模型和机器学习

<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/d4d0558a-503c-495a-8477-f0f4c88e58c0.jpg" width="100%" style="display: block; margin: auto;" />

无需在各种框架之间来回切换。modeltime 解锁了机器学习和经典时间序列分析。

  • forecast:使用ARIMA、ETS等模型(arima_reg()arima_boost()exp_smoothing())。
  • prophet:使用Facebook的Prophet算法(prophet_reg()prophet_boost()
  • tidymodels:使用任何 parsnip 模型:rand_forest()boost_tree()linear_reg()mars()svm_rbf() 进行预测

更快速地预测

简化的预测工作流程

Modeltime 采用简化的工作流程(参见Modeltime入门),使用最佳实践进行预测。

<hr> <div class="figure" style="text-align: center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/58e3d034-d9d0-4b33-9611-9be8852bd6bb.jpg" alt="简化的预测工作流程" width="100%" /> <p class="caption"> 简化的预测工作流程 </p> </div> <hr>

认识modeltime生态系统

学习不断增长的预测包生态系统

<div class="figure" style="text-align: center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/5b0ea7c0-31d3-4898-8282-e9ab4795e9c8.jpg" alt="Modeltime生态系统正在成长" width="100%" /> <p class="caption"> Modeltime生态系统正在成长 </p> </div>

Modeltime是不断发展的生态系统中的一部分,包含多个Modeltime预测包。

总结

Modeltime是一个出色的时间序列预测生态系统。但学习它可能需要很长时间:

  • 众多算法
  • 集成和重采样
  • 机器学习
  • 深度学习
  • 可扩展建模:10,000+时间序列

你可能在想我要如何学习时间序列预测。这里有一个解决方案,可以为你节省多年的挣扎。

参加高性能预测课程

成为你所在组织的预测专家

<a href="https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting/" target="_blank"><img src="https://www.filepicker.io/api/file/bKyqVAi5Qi64sS05QYLk" alt="高性能时间序列预测课程" width="100%" style="box-shadow: 0 0 5px 2px rgba(0, 0, 0, .5);"/></a>

高性能时间序列课程

时间序列正在变革

时间序列正在发生变革。**企业现在每天需要10,000+时间序列预测。**这就是我所说的高性能时间序列预测系统(HPTSF) - 准确、稳健且可扩展的预测。

**高性能预测系统将通过提高准确性和可扩展性来拯救公司。**想象一下,如果你能为你的组织提供"高性能时间序列预测系统"(HPTSF系统),你的职业生涯会发生什么变化。

如何学习高性能时间序列预测

我在高性能时间序列预测课程中教授如何构建HPTFS系统。你将学到:

  • 使用Modeltime进行时间序列机器学习(前沿技术) - 30多种模型(Prophet、ARIMA、XGBoost、随机森林等)
  • 使用GluonTS进行深度学习(竞赛获胜者)
  • 时间序列预处理、噪声减少和异常检测
  • 使用滞后变量和外部回归因子进行特征工程
  • 超参数调优
  • 时间序列交叉验证
  • 集成多种机器学习和单变量建模技术(竞赛获胜者)
  • 可扩展预测 - 并行预测1000+时间序列
  • 以及更多内容。
<p class="text-center" style="font-size:24px;"> 成为你所在组织的时间序列专家。 </p> <br> <p class="text-center" style="font-size:30px;"> <a href="https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting">参加高性能时间序列预测课程</a> </p>

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多