R语言时间序列预测框架 整合机器学习与传统方法
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
在
R
中进行整洁的时间序列预测。
使命:我们的首要目标是使高性能时间序列分析变得更简单、更快速、更具可扩展性。Modeltime 通过提供简单易用的建模和预测时间序列的基础设施来实现这一目标。
对于喜欢视频教程的人来说,我们有一个11分钟的YouTube视频,带你了解Modeltime工作流程。
<a href="https://www.youtube.com/watch?v=-bCelif-ENY" target="_blank"> <p style="text-align:center;"> <img src= "vignettes/modeltime-video.jpg" alt="Modeltime入门" width="60%"/> </p> <p style="text-align:center"> (点击在YouTube上观看) </p> </a>Modeltime入门:使用 modeltime
进行预测的6步流程介绍
Modeltime文档:学习如何使用 modeltime
,查找 Modeltime模型,以及扩展 modeltime
,以便在 Modeltime工作流程 中使用新算法。
CRAN版本:
install.packages("modeltime", dependencies = TRUE)
开发版本:
remotes::install_github("business-science/modeltime", dependencies = TRUE)
<img src="https://yellow-cdn.veclightyear.com/0a4dffa0/d4d0558a-503c-495a-8477-f0f4c88e58c0.jpg" width="100%" style="display: block; margin: auto;" />Modeltime在一个框架中解锁时间序列模型和机器学习
无需在各种框架之间来回切换。modeltime
解锁了机器学习和经典时间序列分析。
arima_reg()
、arima_boost()
和 exp_smoothing()
)。prophet_reg()
和 prophet_boost()
)parsnip
模型:rand_forest()
、boost_tree()
、linear_reg()
、mars()
、svm_rbf()
进行预测简化的预测工作流程
Modeltime 采用简化的工作流程(参见Modeltime入门),使用最佳实践进行预测。
<hr> <div class="figure" style="text-align: center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/58e3d034-d9d0-4b33-9611-9be8852bd6bb.jpg" alt="简化的预测工作流程" width="100%" /> <p class="caption"> 简化的预测工作流程 </p> </div> <hr><div class="figure" style="text-align: center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/5b0ea7c0-31d3-4898-8282-e9ab4795e9c8.jpg" alt="Modeltime生态系统正在成长" width="100%" /> <p class="caption"> Modeltime生态系统正在成长 </p> </div>学习不断增长的预测包生态系统
Modeltime是不断发展的生态系统中的一部分,包含多个Modeltime预测包。
Modeltime是一个出色的时间序列预测生态系统。但学习它可能需要很长时间:
你可能在想我要如何学习时间序列预测。这里有一个解决方案,可以为你节省多年的挣扎。
成为你所在组织的预测专家
<a href="https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting/" target="_blank"><img src="https://www.filepicker.io/api/file/bKyqVAi5Qi64sS05QYLk" alt="高性能时间序列预测课程" width="100%" style="box-shadow: 0 0 5px 2px rgba(0, 0, 0, .5);"/></a>
时间序列正在发生变革。**企业现在每天需要10,000+时间序列预测。**这就是我所说的高性能时间序列预测系统(HPTSF) - 准确、稳健且可扩展的预测。
**高性能预测系统将通过提高准确性和可扩展性来拯救公司。**想象一下,如果你能为你的组织提供"高性能时间序列预测系统"(HPTSF系统),你的职业生涯会发生什么变化。
我在高性能时间序列预测课程中教授如何构建HPTFS系 统。你将学到:
Modeltime
进行时间序列机器学习(前沿技术) - 30多种模型(Prophet、ARIMA、XGBoost、随机森林等)GluonTS
进行深度学习(竞赛获胜者)AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操 作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的 配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能 语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独 家AI资源、AI项目落地
微信扫一扫关注公众号