Project Icon

crab

多模态语言模型代理基准测试框架

CRAB是一个构建语言模型代理基准环境的Python框架。该项目支持跨平台部署,提供统一接口访问多种环境。CRAB特点包括简单配置、创新的基准测试套件和图形评估方法。这些功能为开发和评估多模态语言模型代理提供了灵活的工具。

🦀 CRAB: 跨平台多模态语言模型智能体的嵌入式基准测试

arXiv Slack Discord 微信 Twitter

网站 & 演示 | 博客 | 中文博客 | CAMEL-AI

概述

CRAB 是一个以 Python 为中心的框架,用于构建大型语言模型智能体基准测试环境。

主要特点

🌐 跨平台和多环境

  • 创建支持各种部署选项的智能体环境,包括内存中、Docker 托管、虚拟机或分布式物理机,只要它们可以通过 Python 函数访问。
  • 让智能体通过统一的接口同时访问所有环境。

⚙️ 易用的配置

  • 只需在 Python 函数上添加 @action 装饰器即可添加新动作。
  • 通过整合多个动作来定义环境。

📐 创新的基准测试套件

  • 以直观的 Python 原生方式定义任务和相应的评估器。
  • 引入新颖的图形评估方法,提供细粒度的指标。

安装

前提条件

  • Python 3.10 或更高版本
pip install crab-framework[client]

CRAB-Benchmark-v0 实验

所有数据集和实验代码都在 crab-benchmark-v0 目录中。在使用我们的基准测试之前,请仔细阅读基准测试教程

示例

使用 OpenAI 智能体运行模板环境

export OPENAI_API_KEY=<你的 API 密钥>
python examples/single_env.py
python examples/multi_env.py

引用

如果您在工作中使用了任何相关内容,请引用我们的论文

@misc{xu2024crab,
      title={CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents}, 
      author={Tianqi Xu and Linyao Chen and Dai-Jie Wu and Yanjun Chen and Zecheng Zhang and Xiang Yao and Zhiqiang Xie and Yongchao Chen and Shilong Liu and Bochen Qian and Philip Torr and Bernard Ghanem and Guohao Li},
      year={2024},
      eprint={2407.01511},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2407.01511}, 
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号