rubert-tiny2-cedr-emotion-detection

rubert-tiny2-cedr-emotion-detection

俄语情感识别的多标签分类模型

该模型基于cointegrated/rubert-tiny2进行微调,适用于俄语文本的多标签情感分类任务。模型在CEDR数据集上经过40个周期的训练,学习率为1e-5,批次大小为64。测试结果显示,模型在愉悦、悲伤、惊讶等情感识别上的表现优异,AUC平均值为0.8956,F1微平均值为0.9280,可用于多种俄语文本情感分析场景。

CEDR数据集RuBERT多标签分类模型Github开源项目Adam优化器情感分类Huggingface

rubert-tiny2-cedr-emotion-detection项目介绍

项目背景

rubert-tiny2-cedr-emotion-detection项目是一个专注于俄语句子情感分类的模型。其核心任务是多标签分类,因为一条句子中可能同时包含多种情感。这个模型是基于cointegrated/rubert-tiny2模型进行微调的,其数据集来源于CEDR,相关研究已在Sboev等人撰写的论文“Data-Driven Model for Emotion Detection in Russian Texts”中详细描述。

数据集与训练

该项目使用的CEDR数据集,是一种专门用于俄语文本情感识别的数据集。模型的训练过程中使用了Adam优化器,进行了40次迭代(epoch),学习率设置为1e-5,批次大小(batch size)为64。具体的训练流程可以参考提供的学习笔记本文件。

评价指标

模型在测试数据集上进行了效果评估,其预测概率的质量以两种常用指标进行衡量:AUC值和F1值。

  • AUC值:用于评估模型对各个情感分类(以及无情感状态)的整体性能。不同情感类别的AUC值表现如下:

    • 无情感:0.9286
    • 快乐:0.9512
    • 悲伤:0.9564
    • 惊讶:0.8908
    • 恐惧:0.8955
    • 愤怒:0.7511
    • 平均值(所有类别):0.8956
    • 平均值(仅情感类别):0.8890
  • F1值

    • F1 micro:用于评估整体预测的精确度,结果为0.9280
    • F1 macro:用于评估各个类别的均衡性能,结果为0.8348

其中,F1 micro和F1 macro分别为常用的精确率、召回率和F1分数结合的指标。

项目应用

该项目能够广泛应用于任何需要分析俄语文本情感的领域,如社交媒体分析、客户反馈审查等。通过对句子中情感的检测与分类,可以帮助用户更好地理解文本中传达的信息及其情感内涵。

演示示例

为了便于理解与使用,该项目提供了多个预制的文本示例,如:

  • "Бесишь меня, падла"(表明愤怒情感)
  • "Как здорово, что все мы здесь сегодня собрались"(传达快乐情感)
  • "Как-то стрёмно, давай свалим отсюда?"(包含惊讶或恐惧情感)
  • "Грусть-тоска меня съедает"(表达悲伤情感)

这些示例展示了该模型在现实不同情感表达场景中的应用效果。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多