delight

delight

优化Spark应用性能的开源分析工具

Delight是一款开源的Spark应用性能分析工具,为Spark UI和History Server提供替代方案。它适用于各种Spark平台,通过直观的界面展示执行器CPU使用情况和内存峰值等关键指标。Delight集成了Spark History Server功能,简化了Spark UI的访问过程。该工具使用开源agent收集Spark事件,并在应用完成后在托管仪表板上呈现详细分析结果,助力开发者优化Spark应用性能。

DelightSpark UISpark History Server性能优化大数据分析Github开源项目

:warning: Delight have been shutdown on May 31st 2024 :warning:

All functionalities have been integrated into NetApp's Ocean for Apache Spark

Delight - The New & Improved Spark UI and Spark History Server

Delight is a free Spark UI & Spark History Server alternative with new metrics and visualizations that will delight you!

The Delight project is developed by Data Mechanics, which is now part of the Spot family. Delight works on top of any Spark platform, whether it's open-source or commercial, in the cloud or on-premise.

Overview

The Delight web dashboard lists your completed Spark applications with high-level information and metrics.

<p align="center"> <a href="documentation/images/delight_dashboard.png"><img src="documentation/images/delight_dashboard.png" width="80%" align="middle"></a> </p>

When you click on a specific application, you access an overview screen for this application. It contains a graph of your Executor Cores Usage, broken down by categories. This graph is aligned with a timeline of your Spark jobs and stages, so that it's easy for you to correlate CPU metrics with the code of your Spark application.

For example, Delight made it obvious that this application (left) suffered from a slow shuffle. After using instances with mounted local SSDs (right), the application performance improved by over 10x.

<a href="documentation/images/before.png"><img src="documentation/images/before.png" width="45%"></a> <a href="documentation/images/after.png"><img src="documentation/images/after.png" width="45%"></a>

Under this graph, you will get a report of the peak memory usage of your Spark executors (the overview screen shows the top 5 executors). This graph should help you tune your container memory sizes - so that memory usage stays in the 70-90% range. This graph breaks down memory usage between JVM, Python, and other processes (at the time of the peak total usage).

<p align="center"> <a href="documentation/images/memory.png"><img src="documentation/images/memory.png" width="65%"></a> </p>

Delight also runs a Spark History Server for you, so it's a great way to access the Spark UI, without having to setup and maintain a Spark History Server yourself.

History & Roadmap

  • June 2020: Project starts with a widely shared blog post detailing our vision.
  • November 2020: First release. A dashboard with one-click access to a Hosted Spark History Server (Spark UI).
  • March 2021: Beta release of the overview screen with Executor CPU metrics and Spark timeline.
  • April 2021: Delight is Generally Available! The overview screen now displays the executors peak memory usage, broken down by the type of memory usage (Java, Python, other processes).
  • June 2022: The list of executors and the memory over time of each executor is available. Overall UI is updated following the acquisiton of Data Mechanics by Spot
  • Coming Next: Driver memory usage, Automated tuning recommendations, Make Delight accessible while the app is running.

Architecture

Delight consists of an open-sourced agent, which runs inside your Spark application (using the SparkListener interface).

Delight Architecture

This agent streams Spark events to Delight backend. These contain metadata about your Spark application execution: how long each task took, how much data was read & written, how much memory was used, etc. These logs do not contain sensitive information like the data that your Spark application is processing. Here's a sample Spark event and a full Spark event log.

Once your application is finished, it becomes available on the Delight hosted dashboard. It gives you access to high-level metrics, to a new Delight screen showing CPU & Memory metrics, and to the Spark UI.

Installation

To use Delight:

  • Sign in through our website using your Google account. If you want to share a single Delight dashboard, you should use your company's Google account.
  • Head to settings on the left navigation bar, and create a personal access token. This token will uniquely identify your applications in Delight - treat it as a secret.
  • Follow the installation instructions below for your platform.

Here are the available instructions:

Compatibility

Delight is compatible with Spark 2.4.0 to Spark 3.3.0 with the following Maven coordinates:

co.datamechanics:delight_<replace-with-your-scala-version-2.11-or-2.12>:latest-SNAPSHOT

We also maintain a version compatible with Spark 2.3.x. Please use the following Maven coordinates to use it:

co.datamechanics:delight_2.11:2.3-latest-SNAPSHOT

Delight is compatible with Pyspark. But even if you use Python, you'll have to determine the Scala version used by your Spark distribution and fill out the placeholder above in the Maven coordinates!

Configurations

ConfigExplanationDefault value
spark.delight.accessToken.secretAn access token to authenticate yourself with Delight. If the access token is missing, the listener will not stream events(none)
spark.delight.appNameOverrideThe name of the app that will appear in Delight. This is only useful if your platform does not allow you to set spark.app.name.spark.app.name

Advanced configurations

We've listed more technical configurations in this section for completeness. You should not need to change the values of these configurations though, so drop us a line if you do, we'll be interested to know more!

ConfigExplanationDefault value
spark.delight.collector.urlURL of the Delight collector APIhttps://api.delight.datamechanics.co/collector/
spark.delight.buffer.maxNumEventsThe number of Spark events to reach before triggering a call to Delight Collector API. Special events like job ends also trigger a call.1000
spark.delight.payload.maxNumEventsThe maximum number of Spark events to be sent in one call to Delight Collector API.10000
spark.delight.heartbeatIntervalSecs(Internal config) the interval at which the listener send an heartbeat requests to the API. It allow us to detect if the app was prematurely finished and start the processing ASAP10s
spark.delight.pollingIntervalSecs(Internal config) the interval at which the object responsible for calling the API checks whether there are new payloads to be sent0.5s
spark.delight.maxPollingIntervalSecs(Internal config) upon connection error, the polling interval increases exponentially until this value. It returns to its initial value once a call to the API passes through60s
spark.delight.maxWaitOnEndSecs(Internal config) the time the Spark application waits for remaining payloads to be sent after the event SparkListenerApplicationEnd. Not applicable in the case of Databricks10s
spark.delight.waitForPendingPayloadsSleepIntervalSecs(Internal config) the interval at which the object responsible for calling the API checks whether there are new remaining to be sent, after the event SparkListenerApplicationEnd is received. Not applicable in the case of Databricks1s
spark.delight.logDuration(Debugging config) whether to log the duration of the operations performed by the Spark listenerfalse

Frequently Asked Questions

If you don't find the answer you're loooking for, contact us through the chat window on the bottom right corner of your Delight dashboard.

Is Delight really free?

Yes, it's entirely free of charge.

Is Delight open-source?

Delight consists of two components:

  1. An open-source agent which runs within your Spark applications (as a SparkListener) and streams metrics in real-time to our backend. The code for this agent is on this github repository, so you can audit it and trust it.
  2. A closed-source backend system responsible of collecting, storing, and serving the metrics necessary to Delight, as well as authentication.

Which data does Delight collect? Is it secure?

Delight collects Spark event logs. This is non-sensitive metadata about your Spark application execution (for example, for each Spark task there is metadata on memory usage, CPU usage, network traffic). Delight does not record any sensitive information (like the data that your application operates on). ‍ This data is encrypted with your access token and sent over HTTPS to the Delight backend. Your access token guarantees that the metrics collected will only be visible to yourself (and to your colleagues, if you signed up with your company's Google account).

This data is automatically deleted 30 days its collection, and it is not shared with any third party.

What is the efficiency score visible in the Delight dashboard?

The efficiency ratio is calculated as the sum of the duration of all the Spark tasks, divided by the sum of the core uptime of your Spark executors.

An efficiency score of 75% means that on average, your Spark executor cores are running Spark tasks three quarter of the time. A low efficiency score means that you are wasting a lot of your compute resources. The Ocean for Apache Spark platform automatically tunes your Spark application configurations to make them more efficient!

Is Delight accessible while the app is running?

No, at this moment you can only access Delight once your app has completed. This means that Delight is not suited for long-running applications (like interactive clusters staying up 24x7, or streaming jobs).

Making Delight accessible in real time is on our roadmap.

I don't have a google account, how can I sign up?

At this time, the only sign in method is using a Google account. We'll be adding support for login+password authentication in the future.

How can I invite a colleague to share the same Delight dashboard?

If you sign up using the same Google organization as your colleague, you will automatically share the same dashboard. You don't need to invite your colleague, they can just sign up and get started.

What's your log retention? For how long can I access Delight?

The Delight UI is accessible for 30 days after the app completion. After this time, the logs are deleted.

There's also a limit of 10,000 apps per customer. If you reach this limit, we will start cleaning up the logs of your oldest apps.

NoSuchMethodError

I installed Delight and saw the following error in the driver logs. How do I solve it?

Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.internal.Logging.$init$(Lorg/apache/spark/internal/Logging;)V
	at co.datamechanics.delight.DelightListener.<init>(DelightListener.scala:11)
	at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
	at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
	at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)

This probably means that the Scala version of Delight does not match the Scala version of the Spark distribution.

If you specified co.datamechanics:delight_2.11:latest-SNAPSHOT, please change to co.datamechanics:delight_2.12:latest-SNAPSHOT. And vice versa!

I'd like to troubleshoot Delight, how can I see its logs?

The Delight jar attached to your Spark driver produces troubleshooting logs within the Spark Driver logs. Look for the class name DelightStreamingConnector. There should be INFO logs printed when your application starts.

If you don't see these logs, you may need to modify the log4j configuration file used by Spark to add this line:

log4j.logger.co.datamechanics.delight=INFO

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多