MELD

MELD

用于情感识别研究的多模态对话数据集

MELD是一个基于《老友记》电视剧的多模态对话情感识别数据集,包含1400多段对话和13000多句话。数据集融合了文本、音频和视觉信息,每句话标注有7种情绪和3种情感倾向。MELD为多模态对话情感识别研究提供了丰富资源,包括详细统计信息、标注说明和基线模型。该数据集可用于开发情感对话系统等多种应用场景。

MELD多模态情感识别对话数据集情感标注多方对话Github开源项目

MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversation

Note

🔥 If you are interested in IQ testing LLMs, check out our new work: AlgoPuzzleVQA

:fire: We have released the visual features extracted using Resnet - https://github.com/declare-lab/MM-Align

:fire: :fire: :fire: For updated baselines please visit this link: conv-emotion

:fire: :fire: :fire: For downloading the data use wget: wget http://web.eecs.umich.edu/~mihalcea/downloads/MELD.Raw.tar.gz

Leaderboard

Updates

10/10/2020: New paper and SOTA in Emotion Recognition in Conversations on the MELD dataset. Refer to the directory COSMIC for the code. Read the paper -- COSMIC: COmmonSense knowledge for eMotion Identification in Conversations.

22/05/2019: MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversation has been accepted as a full paper at ACL 2019. The updated paper can be found here - https://arxiv.org/pdf/1810.02508.pdf

22/05/2019: Dyadic MELD has been released. It can be used to test dyadic conversational models.

15/11/2018: The problem in the train.tar.gz has been fixed.

Research Works using MELD

Zhang, Yazhou, Qiuchi Li, Dawei Song, Peng Zhang, and Panpan Wang. "Quantum-Inspired Interactive Networks for Conversational Sentiment Analysis." IJCAI 2019.

Zhang, Dong, Liangqing Wu, Changlong Sun, Shoushan Li, Qiaoming Zhu, and Guodong Zhou. "Modeling both Context-and Speaker-Sensitive Dependence for Emotion Detection in Multi-speaker Conversations." IJCAI 2019.

Ghosal, Deepanway, Navonil Majumder, Soujanya Poria, Niyati Chhaya, and Alexander Gelbukh. "DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation." EMNLP 2019.


Introduction

Multimodal EmotionLines Dataset (MELD) has been created by enhancing and extending EmotionLines dataset. MELD contains the same dialogue instances available in EmotionLines, but it also encompasses audio and visual modality along with text. MELD has more than 1400 dialogues and 13000 utterances from Friends TV series. Multiple speakers participated in the dialogues. Each utterance in a dialogue has been labeled by any of these seven emotions -- Anger, Disgust, Sadness, Joy, Neutral, Surprise and Fear. MELD also has sentiment (positive, negative and neutral) annotation for each utterance.

Example Dialogue

Dataset Statistics

StatisticsTrainDevTest
# of modality{a,v,t}{a,v,t}{a,v,t}
# of unique words10,6432,3844,361
Avg. utterance length8.037.998.28
Max. utterance length693745
Avg. # of emotions per dialogue3.303.353.24
# of dialogues1039114280
# of utterances998911092610
# of speakers26047100
# of emotion shift40034271003
Avg. duration of an utterance3.59s3.59s3.58s

Please visit https://affective-meld.github.io for more details.

Dataset Distribution

TrainDevTest
Anger1109153345
Disgust2712268
Fear2684050
Joy1743163402
Neutral47104701256
Sadness683111208
Surprise1205150281

Purpose

Multimodal data analysis exploits information from multiple-parallel data channels for decision making. With the rapid growth of AI, multimodal emotion recognition has gained a major research interest, primarily due to its potential applications in many challenging tasks, such as dialogue generation, multimodal interaction etc. A conversational emotion recognition system can be used to generate appropriate responses by analysing user emotions. Although there are numerous works carried out on multimodal emotion recognition, only a very few actually focus on understanding emotions in conversations. However, their work is limited only to dyadic conversation understanding and thus not scalable to emotion recognition in multi-party conversations having more than two participants. EmotionLines can be used as a resource for emotion recognition for text only, as it does not include data from other modalities such as visual and audio. At the same time, it should be noted that there is no multimodal multi-party conversational dataset available for emotion recognition research. In this work, we have extended, improved, and further developed EmotionLines dataset for the multimodal scenario. Emotion recognition in sequential turns has several challenges and context understanding is one of them. The emotion change and emotion flow in the sequence of turns in a dialogue make accurate context modelling a difficult task. In this dataset, as we have access to the multimodal data sources for each dialogue, we hypothesise that it will improve the context modelling thus benefiting the overall emotion recognition performance. This dataset can also be used to develop a multimodal affective dialogue system. IEMOCAP, SEMAINE are multimodal conversational datasets which contain emotion label for each utterance. However, these datasets are dyadic in nature, which justifies the importance of our Multimodal-EmotionLines dataset. The other publicly available multimodal emotion and sentiment recognition datasets are MOSEI, MOSI, MOUD. However, none of those datasets is conversational.

Dataset Creation

The first step deals with finding the timestamp of every utterance in each of the dialogues present in the EmotionLines dataset. To accomplish this, we crawled through the subtitle files of all the episodes which contains the beginning and the end timestamp of the utterances. This process enabled us to obtain season ID, episode ID, and timestamp of each utterance in the episode. We put two constraints whilst obtaining the timestamps: (a) timestamps of the utterances in a dialogue must be in increasing order, (b) all the utterances in a dialogue have to belong to the same episode and scene. Constraining with these two conditions revealed that in EmotionLines, a few dialogues consist of multiple natural dialogues. We filtered out those cases from the dataset. Because of this error correction step, in our case, we have the different number of dialogues as compare to the EmotionLines. After obtaining the timestamp of each utterance, we extracted their corresponding audio-visual clips from the source episode. Separately, we also took out the audio content from those video clips. Finally, the dataset contains visual, audio, and textual modality for each dialogue.

Paper

The paper explaining this dataset can be found - https://arxiv.org/pdf/1810.02508.pdf

Download the data

Please visit - http://web.eecs.umich.edu/~mihalcea/downloads/MELD.Raw.tar.gz to download the raw data. Data are stored in .mp4 format and can be found in XXX.tar.gz files. Annotations can be found in https://github.com/declare-lab/MELD/tree/master/data/MELD.

Description of the .csv files

Column Specification

Column NameDescription
Sr No.Serial numbers of the utterances mainly for referencing the utterances in case of different versions or multiple copies with different subsets
UtteranceIndividual utterances from EmotionLines as a string.
SpeakerName of the speaker associated with the utterance.
EmotionThe emotion (neutral, joy, sadness, anger, surprise, fear, disgust) expressed by the speaker in the utterance.
SentimentThe sentiment (positive, neutral, negative) expressed by the speaker in the utterance.
Dialogue_IDThe index of the dialogue starting from 0.
Utterance_IDThe index of the particular utterance in the dialogue starting from 0.
SeasonThe season no. of Friends TV Show to which a particular utterance belongs.
EpisodeThe episode no. of Friends TV Show in a particular season to which the utterance belongs.
StartTimeThe starting time of the utterance in the given episode in the format 'hh:mm:ss,ms'.
EndTimeThe ending time of the utterance in the given episode in the format 'hh:mm:ss,ms'.

The files

  • /data/MELD/train_sent_emo.csv - contains the utterances in the training set along with Sentiment and Emotion labels.
  • /data/MELD/dev_sent_emo.csv - contains the utterances in the dev set along with Sentiment and Emotion labels.
  • /data/MELD/test_sent_emo.csv - contains the utterances in the test set along with Sentiment and Emotion labels.
  • /data/MELD_Dyadic/train_sent_emo_dya.csv - contains the utterances in the training set of the dyadic variant of MELD along with Sentiment and Emotion labels. For getting the video clip corresponding to a particular utterance refer to the columns 'Old_Dialogue_ID' and 'Old_Utterance_ID'.
  • /data/MELD_Dyadic/dev_sent_emo_dya.csv - contains the utterances in the dev set of the dyadic variant along with Sentiment and Emotion labels. For getting the video clip corresponding to a particular utterance refer to the columns 'Old_Dialogue_ID' and 'Old_Utterance_ID'.
  • /data/MELD_Dyadic/test_sent_emo_dya.csv - contains the utterances in the test set of the dyadic variant along with Sentiment and Emotion labels. For getting the video clip corresponding to a particular utterance refer to the columns 'Old_Dialogue_ID' and 'Old_Utterance_ID'.

Description of Pickle Files

There are 13 pickle files comprising of the data and features used for training the baseline models. Following is a brief description of each of the pickle files.

Data pickle files:

  • data_emotion.p, data_sentiment.p - These are the primary data files which contain 5 different elements stored as a list.
    • data: It consists of a dictionary with the following key/value pairs.
      • text: original sentence.
      • split: train/val/test - denotes the which split the tuple belongs to.
      • y: label of the sentence.
      • dialog: ID of the dialog the utterance belongs to.
      • utterance: utterance number of the dialog ID.
      • num_words: number of words in the utterance.
    • W: glove embedding matrix
    • vocab: the vocabulary of the dataset
    • word_idx_map: mapping of each word from vocab to its index in W.
    • max_sentence_length: maximum number of tokens in an utterance in the dataset.
    • label_index: mapping of each label (emotion or sentiment) to its assigned index, eg. label_index['neutral']=0
import pickle data, W, vocab, word_idx_map, max_sentence_length, label_index = pickle.load(open(filepath, 'rb'))
  • text_glove_average_emotion.pkl, text_glove_average_sentiment.pkl - It consists of 300 dimensional textual feature vectors of each utterance initialized as the average of the Glove embeddings of all tokens per utterance. It is a list comprising of 3 dictionaries for train, val and the test set with each dictionary indexed in the format dia_utt, where dia is the dialogue id and utt is the utterance id. For eg. train_text_avg_emb['0_0'].shape = (300, )
import pickle train_text_avg_emb, val_text_avg_emb, test_text_avg_emb = pickle.load(open(filepath, 'rb'))
  • audio_embeddings_feature_selection_emotion.pkl,audio_embeddings_feature_selection_sentiment.pkl - It consists of 1611/1422 dimensional audio feature vectors of each utterance trained for emotion/sentiment classification. These features are originally extracted from openSMILE and then followed by L2-based feature selection using SVM. It is a list comprising of 3 dictionaries for train, val and the test set with each dictionary indexed in the format dia_utt, where dia is the dialogue id and utt is the utterance id. For eg. train_audio_emb['0_0'].shape = (1611, ) or (1422, )
import pickle train_audio_emb, val_audio_emb, test_audio_emb = pickle.load(open(filepath, 'rb'))

Model output pickle files:

  • text_glove_CNN_emotion.pkl, text_glove_CNN_sentiment.pkl - It consists of 100 dimensional textual features obtained after training on a CNN-based network for emotion/sentiment calssification. It is a list comprising of 3 dictionaries for train, val and the test set with each dictionary indexed in the format dia_utt, where dia is the dialogue id and utt is the utterance id. For eg. train_text_CNN_emb['0_0'].shape = (100, )
import pickle train_text_CNN_emb, val_text_CNN_emb, test_text_CNN_emb = pickle.load(open(filepath, 'rb'))
  • text_emotion.pkl, text_sentiment.pkl - These files contain the contextual feature representations as produced by the uni-modal bcLSTM model. It consists of 600 dimensional textual feature vector for each utterance for emotion/sentiment classification stored as a dictionary indexed with dialogue id. It is a list comprising of 3 dictionaries for train, val and the test set. For eg. train_text_emb['0'].shape = (33, 600), where 33 is the maximum number of utterances in a dialogue. Dialogues with less utterances are padded with zero-vectors.
import pickle train_text_emb, val_text_emb, test_text_emb = pickle.load(open(filepath, 'rb'))
  • audio_emotion.pkl, audio_sentiment.pkl - These files contain the contextual feature representations as produced by the uni-modal bcLSTM model. It consists of 300/600 dimensional audio feature vector for each utterance for emotion/sentiment classification stored as a dictionary indexed with dialogue id. It is a list comprising of 3 dictionaries for train, val and the test set. For eg. train_audio_emb['0'].shape = (33, 300) or (33, 600), where 33 is the maximum number of utterances in a dialogue. Dialogues with less utterances are padded with zero-vectors.
import pickle train_audio_emb, val_audio_emb, test_audio_emb = pickle.load(open(filepath, 'rb'))
  • bimodal_sentiment.pkl - This file contains the contextual feature representations as produced by the bi-imodal bcLSTM model. It consists of 600 dimensional bimodal (text, audio) feature vector for each utterance for sentiment classification stored as a dictionary indexed with dialogue id. It is a list comprising of 3 dictionaries for train, val and the test set. For eg. train_bimodal_emb['0'].shape = (33, 600), where 33 is the maximum number of utterances in a dialogue. Dialogues with less utterances are padded with zero-vectors.
import pickle train_bimodal_emb, val_bimodal_emb, test_bimodal_emb = pickle.load(open(filepath, 'rb'))

Description of Raw Data

  • There are 3 folders (.tar.gz files)-train, dev and test; each of which corresponds to video clips from the utterances in the 3 .csv files.
  • In any folder, each video clip in the raw data corresponds to one utterance in the corresponding .csv file. The video clips are named in the format: diaX1_uttX2.mp4, where X1 is the Dialogue_ID and X2 is the Utterance_ID as provided in the corresponding .csv file, denoting the particular utterance.
  • For example, consider the video clip dia6_utt1.mp4 in train.tar.gz. The corresponding utterance for this video clip will be in the file train_sent_emp.csv with Dialogue_ID=6 and Utterance_ID=1, which is 'You liked it? You really liked it?'

Reading the Data

There are 2 python scripts provided in './utils/':

  • read_meld.py - displays the path of the video file corresponding to an utterance in the .csv file from MELD.
  • read_emorynlp - displays the path of the video file corresponding to an utterance in the .csv file from Multimodal EmoryNLP Emotion Detection dataset.

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多