<a href="https://explosion.ai"><img src="https://yellow-cdn.veclightyear.com/835a84d5/aaeb809f-625e-4089-9d87-7479468bfbb3.svg" width="125" height="125" align="right" /></a>
cymem为Cython提供了两个小型内存管理辅助工具。它们可以轻松地将内存与Python对象的生命周期绑定,使得当对象被垃圾回收时,内存也会被释放。
最有用的是cymem.Pool
,它作为calloc函数的一个薄包装器:
from cymem.cymem cimport Pool cdef Pool mem = Pool() data1 = <int*>mem.alloc(10, sizeof(int)) data2 = <float*>mem.alloc(12, sizeof(float))
Pool
对象在内部保存内存地址,并在对象被垃圾回收时释放它们。通常,你会将Pool
附加到某个cdef'd类上。这对于具有复杂初始化函数的深度嵌套结构特别方便。只需将Pool
对象传入初始化器,你就不必担心释放结构体了 —— 所有对Pool.alloc
的调用都会在Pool
过期时自动释放。
通过pip安装,并需要Cython。在安装之前,请确保你的pip
、setuptools
和wheel
是最新的。
pip install -U pip setuptools wheel pip install cymem
假设我们需要一系列稀疏矩阵。我们需要快速访问,而Python列表的性能不够好。因此,我们想要一个C数组或C++向量,这意味着稀疏矩阵需要是C级别的结构体 —— 它不能是Python类。我们可以在Cython中轻松地编写这个:
"""不使用Cymem的示例 要使用结构体数组,我们必须在释放时仔细遍历数据结构。 """ from libc.stdlib cimport calloc, free cdef struct SparseRow: size_t length size_t* indices double* values cdef struct SparseMatrix: size_t length SparseRow* rows cdef class MatrixArray: cdef size_t length cdef SparseMatrix** matrices def __cinit__(self, list py_matrices): self.length = 0 self.matrices = NULL def __init__(self, list py_matrices): self.length = len(py_matrices) self.matrices = <SparseMatrix**>calloc(len(py_matrices), sizeof(SparseMatrix*)) for i, py_matrix in enumerate(py_matrices): self.matrices[i] = sparse_matrix_init(py_matrix) def __dealloc__(self): for i in range(self.length): sparse_matrix_free(self.matrices[i]) free(self.matrices) cdef SparseMatrix* sparse_matrix_init(list py_matrix) except NULL: sm = <SparseMatrix*>calloc(1, sizeof(SparseMatrix)) sm.length = len(py_matrix) sm.rows = <SparseRow*>calloc(sm.length, sizeof(SparseRow)) cdef size_t i, j cdef dict py_row cdef size_t idx cdef double value for i, py_row in enumerate(py_matrix): sm.rows[i].length = len(py_row) sm.rows[i].indices = <size_t*>calloc(sm.rows[i].length, sizeof(size_t)) sm.rows[i].values = <double*>calloc(sm.rows[i].length, sizeof(double)) for j, (idx, value) in enumerate(py_row.items()): sm.rows[i].indices[j] = idx sm.rows[i].values[j] = value return sm cdef void* sparse_matrix_free(SparseMatrix* sm) except *: cdef size_t i for i in range(sm.length): free(sm.rows[i].indices) free(sm.rows[i].values) free(sm.rows) free(sm)
我们将数据结构包装在一个Python引用计数类中,尽可能低级,以满足我们的性能需求。这允许我们在Cython的__cinit__
和__dealloc__
特殊方法中分配和释放内存。
然而,在编 写__dealloc__
和sparse_matrix_free
函数时很容易出错,导致内存泄漏。cymem可以让你完全避免编写这些析构函数。相反,你可以这样写:
"""使用Cymem的示例 内存分配隐藏在Pool类后面,它记住了它分配的地址。当Pool对象被垃圾回收时, 它分配的所有地址都会被释放。 我们不需要编写MatrixArray.__dealloc__或sparse_matrix_free, 从而消除了一类常见的错误。 """ from cymem.cymem cimport Pool cdef struct SparseRow: size_t length size_t* indices double* values cdef struct SparseMatrix: size_t length SparseRow* rows cdef class MatrixArray: cdef size_t length cdef SparseMatrix** matrices cdef Pool mem def __cinit__(self, list py_matrices): self.mem = None self.length = 0 self.matrices = NULL def __init__(self, list py_matrices): self.mem = Pool() self.length = len(py_matrices) self.matrices = <SparseMatrix**>self.mem.alloc(self.length, sizeof(SparseMatrix*)) for i, py_matrix in enumerate(py_matrices): self.matrices[i] = sparse_matrix_init(self.mem, py_matrix) cdef SparseMatrix* sparse_matrix_init_cymem(Pool mem, list py_matrix) except NULL: sm = <SparseMatrix*>mem.alloc(1, sizeof(SparseMatrix)) sm.length = len(py_matrix) sm.rows = <SparseRow*>mem.alloc(sm.length, sizeof(SparseRow)) cdef size_t i, j cdef dict py_row cdef size_t idx cdef double value for i, py_row in enumerate(py_matrix): sm.rows[i].length = len(py_row) sm.rows[i].indices = <size_t*>mem.alloc(sm.rows[i].length, sizeof(size_t)) sm.rows[i].values = <double*>mem.alloc(sm.rows[i].length, sizeof(double)) for j, (idx, value) in enumerate(py_row.items()): sm.rows[i].indices[j] = idx sm.rows[i].values[j] = value return sm
Pool
类所做的就是记住它分配的地址。当MatrixArray
对象被垃圾回收时,Pool
对象也会被垃圾回收,这会触发对Pool.__dealloc__
的调用。然后Pool
释放它的所有地址。这使你不必回溯嵌套的数据结构来释放它们,从而消除了一类常见的错误。
有时外部C库使用私有函数来分配和释放对象,但我们仍然希望使用Pool
的惰性特性。
from cymem.cymem cimport Pool, WrapMalloc, WrapFree cdef Pool mem = Pool(WrapMalloc(priv_malloc), WrapFree(priv_free))
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关 注公众号