PyTorch官方代码库,用于视频联合嵌入预测架构V-JEPA,这是一种从视频中自监督学习视觉表示的方法。
Adrien Bardes、Quentin Garrido、Jean Ponce、Xinlei Chen、Michael Rabbat、Yann LeCun、Mahmoud Assran*、Nicolas Ballas*
V-JEPA模型通过被动观看来自VideoMix2M数据集的视频像素进行训练,产生多功能的视觉表示,这些表示在下游视频和图像任务上表现出色,无需调整模型参数;例如,使用冻结的骨干网络和仅有的轻量级任务特定注意力探针。
V-JEPA预训练仅基于无监督特征预测目标,不使用预训练的图像编码器、文本、负样本、人工标注或像素级重建。
<img src="https://github.com/facebookresearch/jepa/assets/7530871/72df7ef0-2ef5-48bb-be46-27963db91f3d" width=40%>       <img src="https://github.com/facebookresearch/jepa/assets/7530871/f26b2e96-0227-44e2-b058-37e7bf1e10db" width=40%>与具有像素解码器的生成方法不同,V-JEPA有一个在潜在空间中进行预测的预测器。 我们训练了一个条件扩散模型,将V-JEPA特征空间预测解码为可解释的像素;在此过程中,预训练的V-JEPA编码器和预测器网络保持冻结状态。 解码器仅输入视频缺失区域的预测表示,无法访问视频的未遮蔽区域。
V-JEPA的特征预测确实是有根据的,并且与 视频未遮蔽区域表现出时空一致性。
<img src="https://github.com/facebookresearch/jepa/assets/7530871/8bb5e338-0db8-4532-ba6f-fc62729acc26" width=90%> <br/> <img src="https://github.com/facebookresearch/jepa/assets/7530871/93e15a3b-9119-4149-ac88-4e6288f2043d" width=22%> <img src="https://github.com/facebookresearch/jepa/assets/7530871/7efd2ee2-2aa0-4065-a4a6-12f1d9d0499c" width=22%> <img src="https://github.com/facebookresearch/jepa/assets/7530871/06626018-cd5a-4536-9d0e-de58506ce5ed" width=22%> <img src="https://github.com/facebookresearch/jepa/assets/7530871/766da53a-e6b8-4f94-82c8-9a53b4764358" width=22%> <br/>配置文件: 所有实验参数都在配置文件中指定(而不是命令行参数)。查看 configs/ 目录以获取示例配置文件。注意,在启动实验之前,您必须更新配置文件中的路径,指向您自己的目录,指示在哪里保存日志和检查点,以及在哪里找到训练数据。
.
├── app # 唯一允许训练循环的地方
│ ├── vjepa # 视频 JEPA 预训练
│ ├── main_distributed.py # 在 slurm 集群上启动应用程序的入口点
│ └── main.py # 在本地机器上启动应用程序以进行调试的入口点
├── evals # 唯一允许评估"应用程序"的地方
│ ├── image_classification # 使用冻结的主干网络训练注意力探针进行图像分类
│ ├── video_classification # 使用冻结的主干网络训练注意力探针进行视频分类
│ ├── main_distributed.py # 在 slurm 集群上启动分布式评估的入口点
│ └── main.py # 在本地机器上启动评估以进行调试的入口点
├── src # 包
│ ├── datasets # 数据集、数据加载器等
│ ├── models # 模型定义
│ ├── masks # 掩码整理器、掩码实用程序等
│ └── utils # 共享实用程序
└── configs # 唯一允许配置文件的地方(指定应用程序/评估运行的实验参数)
├── evals # 用于启动 vjepa 冻结评估的配置
└── pretrain # 用于启动 vjepa 预训练的配置
V-JEPA 预训练和评估可以使用许多标准视频格式。 要使视频数据集与 V-JEPA 代码库兼容,您只需创建一个具有以下格式的 .csv 文件,然后在配置中指定此 CSV 文件的路径。
/绝对文件路径.[mp4, webvid, 等] $整数类别标签
/绝对文件路径.[mp4, webvid, 等] $整数类别标签
/绝对文件路径.[mp4, webvid, 等] $整数类别标签
...
由于 V-JEPA 完全是无监督的,预训练代码将忽略 CSV 文件中的 $整数类别标签。 因此,您可以在这一列中放入随机值。 但是,如果您希望在视频数据集上运行有监督的视频分类评估,则必须将 $整数类别标签 替换为每个视频的真实标签。
我们在图像分类评估中使用标准的 PyTorch ImageFolder 类。 因此,要为图像分类评估设置图像数据集,首先创建一个目录来存储您的图像数据集 $存储图像数据集的目录。 接下来,将您的图像数据集下载到此目录中,格式与 PyTorch ImageFolder 兼容。
例如,假设我们有一个名为 my_image_datasets 的目录。然后我们将图像数据集下载到这个目录中,最终得到以下文件树结构:
.
└── /my_image_datasets/ # 存储图像数据集的位置
├── places205/121517/pytorch/ # Places205
│ └── [...]
├── iNaturalist-2021/110421/ # iNaturalist21
│ └── [...]
├── [...] # 其他图像数据集
│ └── [...]
└── imagenet_full_size/061417/ # ImageNet1k
└── train
│ ├── $class_1
│ │ ├── xxx.[png, jpeg, 等]
│ │ ├── [...]
│ │ └── xxz.[png, jpeg, 等]
│ ├── [...]
│ └── $class_n
│ ├── abc.[png, jpeg, 等]
│ ├── [...]
│ └── abz.[png, jpeg, 等]
└── val
├── $class_1
│ ├── xxx.[png, jpeg, 等]
│ ├── [...]
│ └── xxz.[png, jpeg, 等]
├── [...]
└── $class_n
├── abc.[png, jpeg, 等]
├── [...]
└── abz.[png, jpeg, 等]
如果您希望在启动分布式训练运行之前调试代码或设置,我们提供了在多GPU(或单GPU)机器上本地运行预训练脚本的功能,但复现我们的结果需要启动分布式训练。
单机实现从app/main.py开始,它解析实验配置文件并在多GPU(或单GPU)机器上本地运行预训练。 例如,要在本地机器上使用配置configs/pretrain/vitl16.yaml在GPU "0"、"1"和"2"上运行V-JEPA预训练,请输入以下命令:
python -m app.main \ --fname configs/pretrain/vitl16.yaml \ --devices cuda:0 cuda:1 cuda:2
要启动分布式训练运行,实现从app/main_distributed.py开始,除了 解析配置文件外,还允许指定分布式训练的详细信息。对于分布式训练,我们使用流行的开源工具submitit,并为SLURM集群提供示例。
例如,要使用配置configs/pretrain/vitl16.yaml启动分布式预训练实验,请输入以下命令:
python -m app.main_distributed \ --fname configs/pretrain/vitl16.yaml \ --folder $path_to_save_stderr_and_stdout \ --partition $slurm_partition
如果您希望在启动分布式训练运行之前调试评估代码或设置, 我们提供了在多GPU(或单GPU)机器上本地运行评估脚本的功能,但复现完整评估需要启动分布式训练。 单机实现从eval/main.py开始,它解析实验配置文件并在多GPU(或单GPU)机器上本地运行评估。
例如,要在本地机器上使用配置configs/eval/vitl16_in1k.yaml在GPU "0"、"1"和"2"上运行ImageNet图像分类,请输入以下命令:
python -m evals.main \ --fname configs/eval/vitl16_in1k.yaml \ --devices cuda:0 cuda:1 cuda:2
要启动分布式评估运行,实现从eval/main_distributed.py开始,除了解析配置文件外,还允许指定分布式训练的详细信息。对于分布式训练,我们使用流行的开源工具submitit,并为SLURM集群提供示例。
例如,要使用配置configs/eval/vitl16_in1k.yaml启动分布式ImageNet图像分类实验,请输入以下命令:
python -m evals.main_distributed \ --fname configs/eval/vitl16_in1k.yaml \ --folder $path_to_save_stderr_and_stdout \ --partition $slurm_partition
同样,要使用配置configs/eval/vitl16_k400.yaml启动分布式K400视频分类实验,请输入以下命令:
python -m evals.main_distributed \ --fname configs/eval/vitl16_k400.yaml \ --folder $path_to_save_stderr_and_stdout \ --partition $slurm_partition
运行:
conda create -n jepa python=3.9 pip conda activate jepa python setup.py install
有关此代码发布的许可证详细信息,请参见LICENSE文件。
如果您在研究中发现此存储库有用,请考虑给予星标:star:并引用
@article{bardes2024revisiting, title={Revisiting Feature Prediction for Learning Visual Representations from Video}, author={Bardes, Adrien and Garrido, Quentin and Ponce, Jean and Rabbat, Michael, and LeCun, Yann and Assran, Mahmoud and Ballas, Nicolas}, journal={arXiv:2404.08471}, year={2024} }
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或 是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成 文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪 等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地