jepa

jepa

先进的自监督视频表征学习方法

V-JEPA是一种创新的视频联合嵌入预测架构,专为自监督学习而设计。该方法仅通过观察VideoMix2M数据集的视频像素进行训练,不依赖预训练图像编码器、文本信息、负样本、人工标注或像素级重建。V-JEPA生成的视觉表征具有多功能性,能够在各种下游视频和图像任务中实现优异性能,无需对模型参数进行微调。其特征预测展现出良好的时空一致性,并可通过条件扩散模型转化为可解释的像素表示。

V-JEPA视频处理自监督学习视觉表示特征预测Github开源项目

V-JEPA:视频联合嵌入预测架构

PyTorch官方代码库,用于视频联合嵌入预测架构V-JEPA,这是一种从视频中自监督学习视觉表示的方法。

Meta AI研究院,FAIR

Adrien Bardes、Quentin Garrido、Jean Ponce、Xinlei Chen、Michael Rabbat、Yann LeCun、Mahmoud Assran*、Nicolas Ballas*

[博客] [论文] [Yannic Kilcher的视频]

V-JEPA模型通过被动观看来自VideoMix2M数据集的视频像素进行训练,产生多功能的视觉表示,这些表示在下游视频和图像任务上表现出色,无需调整模型参数;例如,使用冻结的骨干网络和仅有的轻量级任务特定注意力探针。

方法

V-JEPA预训练仅基于无监督特征预测目标,不使用预训练的图像编码器、文本、负样本、人工标注或像素级重建。

<img src="https://github.com/facebookresearch/jepa/assets/7530871/72df7ef0-2ef5-48bb-be46-27963db91f3d" width=40%> &emsp;&emsp;&emsp;&emsp;&emsp; <img src="https://github.com/facebookresearch/jepa/assets/7530871/f26b2e96-0227-44e2-b058-37e7bf1e10db" width=40%>

可视化

与具有像素解码器的生成方法不同,V-JEPA有一个在潜在空间中进行预测的预测器。 我们训练了一个条件扩散模型,将V-JEPA特征空间预测解码为可解释的像素;在此过程中,预训练的V-JEPA编码器和预测器网络保持冻结状态。 解码器仅输入视频缺失区域的预测表示,无法访问视频的未遮蔽区域。

V-JEPA的特征预测确实是有根据的,并且与视频未遮蔽区域表现出时空一致性。

<img src="https://github.com/facebookresearch/jepa/assets/7530871/8bb5e338-0db8-4532-ba6f-fc62729acc26" width=90%> <br/> <img src="https://github.com/facebookresearch/jepa/assets/7530871/93e15a3b-9119-4149-ac88-4e6288f2043d" width=22%> <img src="https://github.com/facebookresearch/jepa/assets/7530871/7efd2ee2-2aa0-4065-a4a6-12f1d9d0499c" width=22%> <img src="https://github.com/facebookresearch/jepa/assets/7530871/06626018-cd5a-4536-9d0e-de58506ce5ed" width=22%> <img src="https://github.com/facebookresearch/jepa/assets/7530871/766da53a-e6b8-4f94-82c8-9a53b4764358" width=22%> <br/>

模型库

预训练模型

<table> <tr> <th colspan="1">模型</th> <th colspan="1">patch大小</th> <th colspan="1">分辨率</th> <th colspan="1">迭代次数</th> <th colspan="1">批量大小</th> <th colspan="1">数据</th> <th colspan="2">下载</th> </tr> <tr> <td>ViT-L</td> <td>2x16x16</td> <td>224x224</td> <td>90K</td> <td>3072</td> <td>VideoMix2M</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vitl16/vitl16.pth.tar">检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/pretrain/vitl16.yaml">配置</a></td> </tr> <tr> <td>ViT-H</td> <td>2x16x16</td> <td>224x224</td> <td>90K</td> <td>3072</td> <td>VideoMix2M</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16/vith16.pth.tar">检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/pretrain/vith16.yaml">配置</a></td> </tr> <tr> <td>ViT-H</td> <td>2x16x16</td> <td>384x384</td> <td>90K</td> <td>2400</td> <td>VideoMix2M</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16-384/vith16-384.pth.tar">检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/pretrain/vith16_384.yaml">配置</a></td> </tr> </table>

K400注意力探针

<table> <tr> <th colspan="1">模型</th> <th colspan="1">分辨率</th> <th colspan="1">准确率 (16x8x3)</th> <th colspan="2">下载</th> </tr> <tr> <td>ViT-L/16</td> <td>224x224</td> <td>80.8</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vitl16/k400-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vitl16_k400_16x8x3.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>224x224</td> <td>82.0</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16/k400-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_k400_16x8x3.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>384x384</td> <td>81.9</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16-384/k400-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_384_k400_16x8x3.yaml">配置</a></td> </tr> </table>

SSv2注意力探针

<table> <tr> <th colspan="1">模型</th> <th colspan="1">分辨率</th> <th colspan="1">准确率 (16x2x3)</th> <th colspan="2">下载</th> </tr> <tr> <td>ViT-L/16</td> <td>224x224</td> <td>69.5</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vitl16/ssv2-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vitl16_ssv2_16x2x3.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>224x224</td> <td>71.4</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16/ssv2-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_ssv2_16x2x3.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>384x384</td> <td>72.2</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16-384/ssv2-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_384_ssv2_16x2x3.yaml">配置</a></td> </tr> </table>

ImageNet1K注意力探针

<table> <tr> <th colspan="1">模型</th> <th colspan="1">分辨率</th> <th colspan="1">准确率</th> <th colspan="2">下载</th> </tr> <tr> <td>ViT-L/16</td> <td>224x224</td> <td>74.8</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vitl16/in1k-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vitl16_in1k.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>224x224</td> <td>75.9</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16/in1k-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_in1k.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>384x384</td> <td>77.4</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16-384/in1k-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_384_in1k.yaml">配置</a></td> </tr> </table>

Places205 注意力探针

<table> <tr> <th colspan="1">模型</th> <th colspan="1">分辨率</th> <th colspan="1">准确率</th> <th colspan="2">下载</th> </tr> <tr> <td>ViT-L/16</td> <td>224x224</td> <td>60.3</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vitl16/places-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vitl16_places.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>224x224</td> <td>61.7</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16/places-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_places.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>384x384</td> <td>62.8</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16-384/places-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_384_places.yaml">配置</a></td> </tr> </table>

iNat21 注意力探针

<table> <tr> <th colspan="1">模型</th> <th colspan="1">分辨率</th> <th colspan="1">准确率</th> <th colspan="2">下载</th> </tr> <tr> <td>ViT-L/16</td> <td>224x224</td> <td>67.8</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vitl16/inat-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vitl16_inat.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>224x224</td> <td>67.9</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16/inat-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_inat.yaml">配置</a></td> </tr> <tr> <td>ViT-H/16</td> <td>384x384</td> <td>72.6</td> <td><a href="https://dl.fbaipublicfiles.com/jepa/vith16-384/inat-probe.pth.tar">注意力探针检查点</a></td> <td><a href="https://github.com/facebookresearch/jepa/blob/master/configs/evals/vith16_384_inat.yaml">配置</a></td> </tr> </table>

代码结构

配置文件: 所有实验参数都在配置文件中指定(而不是命令行参数)。查看 configs/ 目录以获取示例配置文件。注意,在启动实验之前,您必须更新配置文件中的路径,指向您自己的目录,指示在哪里保存日志和检查点,以及在哪里找到训练数据。

.
├── app                       # 唯一允许训练循环的地方
│   ├── vjepa                 #   视频 JEPA 预训练
│   ├── main_distributed.py   #   在 slurm 集群上启动应用程序的入口点
│   └── main.py               #   在本地机器上启动应用程序以进行调试的入口点
├── evals                     # 唯一允许评估"应用程序"的地方
│   ├── image_classification  #   使用冻结的主干网络训练注意力探针进行图像分类
│   ├── video_classification  #   使用冻结的主干网络训练注意力探针进行视频分类
│   ├── main_distributed.py   #   在 slurm 集群上启动分布式评估的入口点
│   └── main.py               #   在本地机器上启动评估以进行调试的入口点
├── src                       # 包
│   ├── datasets              #   数据集、数据加载器等
│   ├── models                #   模型定义
│   ├── masks                 #   掩码整理器、掩码实用程序等
│   └── utils                 #   共享实用程序
└── configs                   # 唯一允许配置文件的地方(指定应用程序/评估运行的实验参数)
    ├── evals                 #   用于启动 vjepa 冻结评估的配置
    └── pretrain              #   用于启动 vjepa 预训练的配置

数据准备

视频数据集

V-JEPA 预训练和评估可以使用许多标准视频格式。 要使视频数据集与 V-JEPA 代码库兼容,您只需创建一个具有以下格式的 .csv 文件,然后在配置中指定此 CSV 文件的路径。

/绝对文件路径.[mp4, webvid, 等] $整数类别标签
/绝对文件路径.[mp4, webvid, 等] $整数类别标签
/绝对文件路径.[mp4, webvid, 等] $整数类别标签
...

由于 V-JEPA 完全是无监督的,预训练代码将忽略 CSV 文件中的 $整数类别标签。 因此,您可以在这一列中放入随机值。 但是,如果您希望在视频数据集上运行有监督的视频分类评估,则必须将 $整数类别标签 替换为每个视频的真实标签。

图像数据集

我们在图像分类评估中使用标准的 PyTorch ImageFolder 类。 因此,要为图像分类评估设置图像数据集,首先创建一个目录来存储您的图像数据集 $存储图像数据集的目录。 接下来,将您的图像数据集下载到此目录中,格式与 PyTorch ImageFolder 兼容。

例如,假设我们有一个名为 my_image_datasets 的目录。然后我们将图像数据集下载到这个目录中,最终得到以下文件树结构:

.
└── /my_image_datasets/                # 存储图像数据集的位置
    ├── places205/121517/pytorch/      #   Places205
    │   └── [...]
    ├── iNaturalist-2021/110421/       #   iNaturalist21
    │   └── [...]
    ├── [...]                          #   其他图像数据集
    │   └── [...]
    └── imagenet_full_size/061417/     #   ImageNet1k
        └── train
        │   ├── $class_1
        │   │    ├── xxx.[png, jpeg, 等]
        │   │    ├── [...]
        │   │    └── xxz.[png, jpeg, 等]
        │   ├── [...]
        │   └── $class_n
        │       ├── abc.[png, jpeg, 等]
        │       ├── [...]
        │       └── abz.[png, jpeg, 等]
        └── val
            ├── $class_1
            │    ├── xxx.[png, jpeg, 等]
            │    ├── [...]
            │    └── xxz.[png, jpeg, 等]
            ├── [...]
            └── $class_n
                ├── abc.[png, jpeg, 等]
                ├── [...]
                └── abz.[png, jpeg, 等]

启动 V-JEPA 预训练

本地训练

如果您希望在启动分布式训练运行之前调试代码或设置,我们提供了在多GPU(或单GPU)机器上本地运行预训练脚本的功能,但复现我们的结果需要启动分布式训练。

单机实现从app/main.py开始,它解析实验配置文件并在多GPU(或单GPU)机器上本地运行预训练。 例如,要在本地机器上使用配置configs/pretrain/vitl16.yaml在GPU "0"、"1"和"2"上运行V-JEPA预训练,请输入以下命令:

python -m app.main \ --fname configs/pretrain/vitl16.yaml \ --devices cuda:0 cuda:1 cuda:2

分布式训练

要启动分布式训练运行,实现从app/main_distributed.py开始,除了解析配置文件外,还允许指定分布式训练的详细信息。对于分布式训练,我们使用流行的开源工具submitit,并为SLURM集群提供示例。

例如,要使用配置configs/pretrain/vitl16.yaml启动分布式预训练实验,请输入以下命令:

python -m app.main_distributed \ --fname configs/pretrain/vitl16.yaml \ --folder $path_to_save_stderr_and_stdout \ --partition $slurm_partition

启动评估

本地训练

如果您希望在启动分布式训练运行之前调试评估代码或设置,我们提供了在多GPU(或单GPU)机器上本地运行评估脚本的功能,但复现完整评估需要启动分布式训练。 单机实现从eval/main.py开始,它解析实验配置文件并在多GPU(或单GPU)机器上本地运行评估。

例如,要在本地机器上使用配置configs/eval/vitl16_in1k.yaml在GPU "0"、"1"和"2"上运行ImageNet图像分类,请输入以下命令:

python -m evals.main \ --fname configs/eval/vitl16_in1k.yaml \ --devices cuda:0 cuda:1 cuda:2

分布式训练

要启动分布式评估运行,实现从eval/main_distributed.py开始,除了解析配置文件外,还允许指定分布式训练的详细信息。对于分布式训练,我们使用流行的开源工具submitit,并为SLURM集群提供示例。

例如,要使用配置configs/eval/vitl16_in1k.yaml启动分布式ImageNet图像分类实验,请输入以下命令:

python -m evals.main_distributed \ --fname configs/eval/vitl16_in1k.yaml \ --folder $path_to_save_stderr_and_stdout \ --partition $slurm_partition

同样,要使用配置configs/eval/vitl16_k400.yaml启动分布式K400视频分类实验,请输入以下命令:

python -m evals.main_distributed \ --fname configs/eval/vitl16_k400.yaml \ --folder $path_to_save_stderr_and_stdout \ --partition $slurm_partition

设置

运行:

conda create -n jepa python=3.9 pip conda activate jepa python setup.py install

许可证

有关此代码发布的许可证详细信息,请参见LICENSE文件。

引用

如果您在研究中发现此存储库有用,请考虑给予星标:star:并引用

@article{bardes2024revisiting, title={Revisiting Feature Prediction for Learning Visual Representations from Video}, author={Bardes, Adrien and Garrido, Quentin and Ponce, Jean and Rabbat, Michael, and LeCun, Yann and Assran, Mahmoud and Ballas, Nicolas}, journal={arXiv:2404.08471}, year={2024} }

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多