BEVFormer

BEVFormer

多摄像头鸟瞰图学习框架助力自动驾驶感知

BEVFormer是一个用于自动驾驶感知的开源框架,通过时空Transformer从多摄像头图像中学习统一的鸟瞰图表示。该方法利用预定义的网格查询,结合空间交叉注意力和时间自注意力机制,有效聚合多视角的空间和时序信息。在nuScenes测试集上,BEVFormer达到56.9%的NDS指标,显著超越现有方法,与激光雷达系统性能相当。这一创新为基于纯视觉的3D目标检测提供了新的基准。

BEVFormer多相机感知自动驾驶目标检测鸟瞰图表示Github开源项目
<div align="center">

BEVFormer:基于摄像头的检测的前沿基线

</div>

https://user-images.githubusercontent.com/27915819/161392594-fc0082f7-5c37-4919-830a-2dd423c1d025.mp4

BEVFormer:通过时空变换器从多摄像头图像学习鸟瞰图表示,ECCV 2022

新闻

  • [2022/6/16]:我们新增了两个BEVformer配置,比基础版本需要更少的GPU内存。请拉取此仓库以获取最新代码。
  • [2022/6/13]:我们发布了BEVFormer的初始版本。它在nuScenes上实现了51.7%的NDS基线结果。
  • [2022/5/23]:🚀🚀基于BEVFormer构建的BEVFormer++,集合了近期最佳实践和我们独特的修改,在Waymo开放数据集3D仅摄像头检测挑战赛中排名第一。我们将在CVPR 2022自动驾驶研讨会上展示BEVFormer++。
  • [2022/3/10]:🚀BEVFormer在nuScenes检测任务上以56.9% NDS(仅使用摄像头)达到了最新技术水平! </br>

摘要

在这项工作中,作者提出了一个名为BEVFormer的新框架,它通过时空变换器学习统一的BEV表示,以支持多个自动驾驶感知任务。简而言之,BEVFormer通过预定义的网格形BEV查询与空间和时间空间进行交互,从而利用空间和时间信息。为了聚合空间信息,作者设计了一种空间交叉注意力机制,每个BEV查询从跨摄像头视图的感兴趣区域提取空间特征。对于时间信息,作者提出了一种时间自注意力机制,以递归方式融合历史BEV信息。 该方法在nuScenes测试集上实现了新的最先进的56.9%的NDS指标,比之前的最佳技术高出9.0个百分点,并与基于LiDAR的基线性能相当。

方法

方法

入门指南

模型库

骨干网络方法学习率调度NDSmAP内存配置下载
R50BEVFormer-tiny_fp1624轮35.925.7-配置模型/日志
R50BEVFormer-tiny24轮35.425.26500M配置模型/日志
R101-DCNBEVFormer-small24轮47.937.010500M配置模型/日志
R101-DCNBEVFormer-base24轮51.741.628500M配置模型/日志
R50BEVformerV2-t1-base24轮42.635.123952M配置模型/日志
R50BEVformerV2-t1-base48轮43.935.923952M配置模型/日志
R50BEVformerV2-t124轮45.338.137579M配置模型/日志
R50BEVformerV2-t148轮46.539.537579M配置模型/日志
R50BEVformerV2-t224轮51.842.038954M配置模型/日志
R50BEVformerV2-t248轮52.643.138954M配置模型/日志
R50BEVformerV2-t824轮55.346.040392M配置模型/日志
BEVFormerV2模型和日志的百度网盘链接[https://pan.baidu.com/s/1ynzlAt1DQbH8NkqmisatTw?pwd=fdcv]在这里。

目录

  • BEVFormerV2 超查询
  • BEVFormerV2 优化,包括内存、速度、推理
  • BEVFormerV2 发布
  • BEV分割检查点
  • BEV分割代码
  • 3D检测检查点
  • 3D检测代码
  • 初始化

引用

如果本工作对您的研究有帮助,请考虑引用以下BibTeX条目。

@article{li2022bevformer,
  title={BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers},
  author={Li, Zhiqi and Wang, Wenhai and Li, Hongyang and Xie, Enze and Sima, Chonghao and Lu, Tong and Qiao, Yu and Dai, Jifeng}
  journal={arXiv preprint arXiv:2203.17270},
  year={2022}
}
@article{Yang2022BEVFormerVA,
  title={BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View Recognition via Perspective Supervision},
  author={Chenyu Yang and Yuntao Chen and Haofei Tian and Chenxin Tao and Xizhou Zhu and Zhaoxiang Zhang and Gao Huang and Hongyang Li and Y. Qiao and Lewei Lu and Jie Zhou and Jifeng Dai},
  journal={ArXiv},
  year={2022},
}

致谢

非常感谢这些优秀的开源项目:

↳ 点赞者

Stargazers repo roster for @nastyox/Repo-Roster

↳ 分叉者

Forkers repo roster for @nastyox/Repo-Roster

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多