Project Icon

arco-era5

云优化和分析就绪的气象再分析数据

ARCO-ERA5项目对ERA5气象再分析数据进行云端优化和分析就绪处理。项目将GRIB格式转换为Zarr格式,并生成规则经纬度网格的版本,便于研究和机器学习应用。数据集涵盖地表和大气层关键气象变量,每月更新,提供全球高分辨率数据。用户可选择原始、云优化或分析就绪版本,满足不同需求。

Analysis-Ready, Cloud Optimized ERA5

Recipes for reproducing Analysis-Ready & Cloud Optimized (ARCO) ERA5 datasets.

IntroductionOverviewAnalysis Ready DataRaw Cloud Optimized DataProject roadmapHow to reproduceFAQsHow to cite this workLicense

Introduction

Our goal is to make a global history of the climate highly accessible in the cloud. To that end, we present a curated copy of the ERA5 corpus in Google Cloud Public Datasets.

What is ERA5?

ERA5 is the fifth generation of ECMWF's Atmospheric Reanalysis. It spans atmospheric, land, and ocean variables. ERA5 is an hourly dataset with global coverage at 30km resolution (~0.28° x 0.28°), ranging from 1979 to the present. The total ERA5 dataset is about 5 petabytes in size.

Check out ECMWF's documentation on ERA5 for more.

What is a reanalysis?

A reanalysis is the "most complete picture currently possible of past weather and climate." Reanalyses are created from assimilation of a wide range of data sources via numerical weather prediction (NWP) models.

Read ECMWF's introduction to reanalysis for more.

So far, we have ingested meteorologically valuable variables for the land and atmosphere. From this, we have produced a cloud-optimized version of ERA5, in which we have converted grib data to Zarr with no other modifications. In addition, we have created "analysis-ready" versions on regular lat-lon grids, oriented towards common research & ML workflows.

This two-pronged approach for the data serves different user needs. Some researchers need full control over the interpolation of data for their analysis. Most will want a batteries-included dataset, where standard pre-processing and chunk optimization is already applied. In general, we ensure that every step in this pipeline is open and reproducible, to provide transparency in the provenance of all data.

Overview

LocationTypeDescription
$BUCKET/ar/Analysis ReadyAn ML-ready, unified (surface & atmospheric) version of the data in Zarr.
$BUCKET/co/Cloud OptimizedA port of gaussian-gridded ERA5 data to Zarr.
$BUCKET/raw/Raw DataAll raw grib & NetCDF data.

Files are updated from ECMWF on a monthly cadence (on roughly the 9th of each month) with a 3 month delay, which avoids including preliminary versions of ERA5. The date of the latest available data can be found by inspecting the "time" axis of each Zarr store.

Analysis Ready Data

These datasets have been regridded to a uniform 0.25° equiangular horizontal resolution to facilitate downstream analyses, e.g., with WeatherBench2.

0.25° Pressure and Surface Level Data

This dataset contains most pressure-level fields and all surface-level field regridded to a uniform 0.25° resolution. It is a superset of the data used to train GraphCast and NeuralGCM.

import xarray

ar_full_37_1h = xarray.open_zarr(
    'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3',
    chunks=None,
    storage_options=dict(token='anon'),
)
  • Times: 00/to/23
  • Levels: 1/2/3/5/7/10/20/30/50/70/100/125/150/175/200/225/250/300/350/400/450/500/550/600/650/700/750/775/800/825/850/875/900/925/950/975/1000
  • Grid: equiangular lat-lon
  • Size: 2.05 PB
  • Chunking: {'time': 1, 'latitude': 721, 'longitude': 1440, 'level': 37}
  • Chunk size (per variable): 154 MB
Data summary table
nameshort nameunitsdocs
100m_u_component_of_windu100m s**-1https://codes.ecmwf.int/grib/param-db/228246
100m_v_component_of_windv100m s**-1https://codes.ecmwf.int/grib/param-db/228247
10m_u_component_of_neutral_windu10nm s**-1https://codes.ecmwf.int/grib/param-db/228131
10m_u_component_of_windu10m s**-1https://codes.ecmwf.int/grib/param-db/165
10m_v_component_of_neutral_windv10nm s**-1https://codes.ecmwf.int/grib/param-db/228132
10m_v_component_of_windv10m s**-1https://codes.ecmwf.int/grib/param-db/166
10m_wind_gust_since_previous_post_processingfg10m s**-1https://codes.ecmwf.int/grib/param-db/175049
2m_dewpoint_temperatured2mKhttps://codes.ecmwf.int/grib/param-db/500018
2m_temperaturet2mKhttps://codes.ecmwf.int/grib/param-db/500013
air_density_over_the_oceansp140209kg m**-3https://codes.ecmwf.int/grib/param-db/140209
angle_of_sub_gridscale_orographyanorradianshttps://codes.ecmwf.int/grib/param-db/162
anisotropy_of_sub_gridscale_orographyisor~https://codes.ecmwf.int/grib/param-db/161
benjamin_feir_indexbfidimensionlesshttps://codes.ecmwf.int/grib/param-db/140253
boundary_layer_dissipationbldJ m**-2https://codes.ecmwf.int/grib/param-db/145
boundary_layer_heightblhmhttps://codes.ecmwf.int/grib/param-db/159
charnockchnk~https://codes.ecmwf.int/grib/param-db/148
clear_sky_direct_solar_radiation_at_surfacecdirJ m**-2https://codes.ecmwf.int/grib/param-db/228022
cloud_base_heightcbhmhttps://codes.ecmwf.int/grib/param-db/228023
coefficient_of_drag_with_wavescdwwdimensionlesshttps://codes.ecmwf.int/grib/param-db/140233
convective_available_potential_energycapeJ kg**-1https://codes.ecmwf.int/grib/param-db/59
convective_inhibitioncinJ kg**-1https://codes.ecmwf.int/grib/param-db/228001
convective_precipitationcpmhttps://codes.ecmwf.int/grib/param-db/228143
convective_rain_ratecrrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228218
convective_snowfallcsfm of water equivalenthttps://codes.ecmwf.int/grib/param-db/239
convective_snowfall_rate_water_equivalentcsfrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228220
downward_uv_radiation_at_the_surfaceuvbJ m**-2https://codes.ecmwf.int/grib/param-db/57
duct_base_heightdctbmhttps://codes.ecmwf.int/grib/param-db/228017
eastward_gravity_wave_surface_stresslgwsN m**-2 shttps://codes.ecmwf.int/grib/param-db/195
eastward_turbulent_surface_stressewssN m**-2 shttps://codes.ecmwf.int/grib/param-db/180
evaporationem of water equivalenthttps://codes.ecmwf.int/grib/param-db/182
forecast_albedofal(0 - 1)https://codes.ecmwf.int/grib/param-db/243
forecast_logarithm_of_surface_roughness_for_heatflsr~https://codes.ecmwf.int/grib/param-db/245
forecast_surface_roughnessfsrmhttps://codes.ecmwf.int/grib/param-db/244
fraction_of_cloud_covercc(0 - 1)https://codes.ecmwf.int/grib/param-db/248
free_convective_velocity_over_the_oceansp140208m s**-1
friction_velocityzustm s**-1https://codes.ecmwf.int/grib/param-db/228003
geopotential_at_surfacezm2 s-2https://codes.ecmwf.int/grib/param-db/129
gravity_wave_dissipationgwdJ m**-2https://codes.ecmwf.int/grib/param-db/197
high_cloud_coverhcc(0 - 1)https://codes.ecmwf.int/grib/param-db/3075
high_vegetation_covercvh(0 - 1)https://codes.ecmwf.int/grib/param-db/28
ice_temperature_layer_1istl1Khttps://codes.ecmwf.int/grib/param-db/35
ice_temperature_layer_2istl2Khttps://codes.ecmwf.int/grib/param-db/36
ice_temperature_layer_3istl3Khttps://codes.ecmwf.int/grib/param-db/37
ice_temperature_layer_4istl4Khttps://codes.ecmwf.int/grib/param-db/38
instantaneous_10m_wind_gusti10fgm s**-1https://codes.ecmwf.int/grib/param-db/228029
instantaneous_eastward_turbulent_surface_stressiewsN m**-2https://codes.ecmwf.int/grib/param-db/229
instantaneous_large_scale_surface_precipitation_fractionilspf(0 - 1)https://codes.ecmwf.int/grib/param-db/228217
instantaneous_moisture_fluxiekg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/232
instantaneous_northward_turbulent_surface_stressinssN m**-2https://codes.ecmwf.int/grib/param-db/230
instantaneous_surface_sensible_heat_fluxishfW m**-2https://codes.ecmwf.int/grib/param-db/231
k_indexkxKhttps://codes.ecmwf.int/grib/param-db/260121
lake_bottom_temperaturelbltKhttps://codes.ecmwf.int/grib/param-db/228010
lake_covercl(0 - 1)https://codes.ecmwf.int/grib/param-db/26
lake_depthdlmhttps://codes.ecmwf.int/grib/param-db/228007
lake_ice_depthlicdmhttps://codes.ecmwf.int/grib/param-db/228014
lake_ice_temperaturelictKhttps://codes.ecmwf.int/grib/param-db/228013
lake_mix_layer_depthlmldmhttps://codes.ecmwf.int/grib/param-db/228009
lake_mix_layer_temperaturelmltKhttps://codes.ecmwf.int/grib/param-db/228008
lake_shape_factorlshfdimensionlesshttps://codes.ecmwf.int/grib/param-db/228012
lake_total_layer_temperatureltltKhttps://codes.ecmwf.int/grib/param-db/228011
land_sea_masklsm(0 - 1)https://codes.ecmwf.int/grib/param-db/172
large_scale_precipitationlspmhttps://codes.ecmwf.int/grib/param-db/3062
large_scale_precipitation_fractionlspfshttps://codes.ecmwf.int/grib/param-db/50
large_scale_rain_ratelsrrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228219
large_scale_snowfalllsfm of water equivalenthttps://codes.ecmwf.int/grib/param-db/240
large_scale_snowfall_rate_water_equivalentlssfrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228221
leaf_area_index_high_vegetationlai_hvm2 m-2https://codes.ecmwf.int/grib/param-db/67
leaf_area_index_low_vegetationlai_lvm2 m-2https://codes.ecmwf.int/grib/param-db/66
low_cloud_coverlcc(0 - 1)https://codes.ecmwf.int/grib/param-db/3073
low_vegetation_covercvl(0 - 1)https://codes.ecmwf.int/grib/param-db/27
maximum_2m_temperature_since_previous_post_processingmx2tKhttps://codes.ecmwf.int/grib/param-db/201
maximum_individual_wave_heighthmaxmhttps://codes.ecmwf.int/grib/param-db/140218
maximum_total_precipitation_rate_since_previous_post_processingmxtprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228226
mean_boundary_layer_dissipationmbldW m**-2https://codes.ecmwf.int/grib/param-db/235032
mean_convective_precipitation_ratemcprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235030
mean_convective_snowfall_ratemcsrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235056
mean_direction_of_total_swellmdtsdegreeshttps://codes.ecmwf.int/grib/param-db/140238
mean_direction_of_wind_wavesmdwwdegreeshttps://codes.ecmwf.int/grib/param-db/500072
mean_eastward_gravity_wave_surface_stressmegwssN m**-2https://codes.ecmwf.int/grib/param-db/235045
mean_eastward_turbulent_surface_stressmetssN m**-2https://codes.ecmwf.int/grib/param-db/235041
mean_evaporation_ratemerkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235043
mean_gravity_wave_dissipationmgwdW m**-2https://codes.ecmwf.int/grib/param-db/235047
mean_large_scale_precipitation_fractionmlspfProportionhttps://codes.ecmwf.int/grib/param-db/235026
mean_large_scale_precipitation_ratemlsprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235029
mean_large_scale_snowfall_ratemlssrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235057
mean_northward_gravity_wave_surface_stressmngwssN m**-2https://codes.ecmwf.int/grib/param-db/235046
mean_northward_turbulent_surface_stressmntssN m**-2https://codes.ecmwf.int/grib/param-db/235042
mean_period_of_total_swellmptsshttps://codes.ecmwf.int/grib/param-db/140239
mean_period_of_wind_wavesmpwwshttps://codes.ecmwf.int/grib/param-db/500074
mean_potential_evaporation_ratemperkg m**-2
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号